
Internet Mathematics, 12:239–280, 2016
Copyright © Taylor & Francis Group, LLC
ISSN: 1542-7951 print/1944-9488 online
DOI: 10.1080/15427951.2016.1177801

AN INTRODUCTION TO TEMPORAL GRAPHS:
AN ALGORITHMIC PERSPECTIVE

Othon Michail1,2

1Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece
2Department of Computer Science, University of Liverpool, Liverpool, UK

Abstract A temporal graph is, informally speaking, a graph that changes with time. When
time is discrete and only the relationships between the participating entities may change and
not the entities themselves, a temporal graph may be viewed as a sequence G1, G2 . . . , Gl of
static graphs over the same (static) set of nodes V . Though static graphs have been extensively
studied, for their temporal generalization we are still far from having a concrete set of structural
and algorithmic principles. Recent research shows that many graph properties and problems
become radically different and usually substantially more difficult when an extra time dimension
is added to them. Moreover, there is already a rich and rapidly growing set of modern systems
and applications that can be naturally modeled and studied via temporal graphs. This further
motivates the need for the development of a temporal extension of graph theory. Here, we
survey recent results on temporal graphs and temporal graph problems that have appeared in
the Computer Science community.

1. INTRODUCTION

The conception and development of graph theory is probably one of the most impor-
tant achievements of mathematics and combinatorics of the last few centuries. Its applica-
tions are inexhaustible and ubiquitous. Almost every scientific domain, from mathematics
and computer science to chemistry and biology, is a natural source of problems of outstand-
ing importance that can be naturally modeled and studied by graphs. The 1736 paper of
Euler on the Seven Bridges of Königsberg problem is regarded as the first formal treatment
of a graph-theoretic problem. Since then, graph theory has found applications in electri-
cal networks, theoretical chemistry, social network analysis, computer networks (such as
the Internet) and distributed systems, to name a few, and has also revealed some of the
most outstanding problems of modern mathematics, such as the four-color theorem and the
traveling salesman problem.

Graphs simply represent a set of objects and a set of pairwise relations between them.
It is very common and shows up in many applications, the pairwise relations to come with
some additional information. For example, in a graph representing a set of cities and the
available roads from each city to the others, the additional information of an edge (C1, C2)
could be the average time it takes to drive from city C1 to city C2. In a graph representing

A preliminary version of this paper has appeared in [52].
Address correspondence to Othon Michail, Computer Technology Institute and Press “Diophantus” (CTI),

N. Kazantzaki Str., Patras University Campus, Rion, P.O. Box 1382, Patras, 26504, Greece. Email: michailo@cti.gr

239

240 MICHAIL

bonding between atoms in a molecule, edges could also have an additional bond order
or bond strength information. Such applications can be modeled by weighted or, more
generally, by labeled graphs, in which edges (and in some cases also nodes) are assigned
values from some domain, such as the set of natural numbers. An example of a classical,
very rich, and well-studied area of labeled graphs is the area of graph coloring [61].

Temporal graphs (also known as dynamic, evolving [24], or time-varying [26, 16]
graphs) can be informally described as graphs that change with time. In terms of modeling,
they can be thought of as a special case of labeled graphs, in which labels capture some
measure of time. Inversely, it is also true that any property of a graph labeled from a discrete
set of labels corresponds to some temporal property if interpreted appropriately. For exam-
ple, a proper edge-coloring, i.e., a coloring of the edges with no two adjacent edges sharing
a common color, corresponds to a temporal graph in which no two adjacent edges share a
common time-label, i.e., a temporal graph in which no two adjacent edges ever appear at
the same time. Still, the time notion, and the rich domain of modern applications motivating
its incorporation to graphs, gives rise to a brand new set of challenging, important, and
practical problems that could not have been observed from the more abstract perspective
of labeled graphs.

Though the formal treatment of temporal graphs is still in its infancy, there is already
a huge identified set of applications and research domains that motivate it and that could
benefit from the development of a concrete set of results, tools, and techniques for temporal
graphs. A great variety of both modern and traditional networks, such as information and
communication networks, social networks, transportation networks, and several physical
systems can be naturally modeled as temporal graphs. In fact, this is true for almost any
network with a dynamic topology. Most modern communication networks, such as mobile
ad hoc, sensor, peer-to-peer, opportunistic, and delay-tolerant networks, are inherently
dynamic. In social networks, the topology usually represents the social connections among
a group of individuals and it changes as the social relationships between the individuals
are updated or as individuals leave or enter the group. In a transportation network, there is
usually some fixed network of routes and a set of transportation units moving over these
routes, and dynamicity refers to the change of the positions of the transportation units in
the network as time passes. Physical systems of interest may include several systems of
interacting particles or molecules reacting in a well-mixed solution. Temporal relationships
and temporal ordering of events are also present in the study of epidemics, wherein a group
of individuals (or computing entities) come into contact with each other and spread an
infectious disease (or a computer virus) in the population.

A very rich motivating domain is that of distributed computing systems that are
inherently dynamic. The growing interest in such systems has been driven mainly by
the advent of low-cost wireless communication devices and the development of efficient
wireless communication protocols. Apart from the huge amount of work that has been
devoted to applications, there is also a steadily growing set of concrete foundational work.
A notable set of researches have studied (distributed) computation in worst-case dynamic
networks, in which the topology may change arbitrarily from round to round, subject to
some constraints that allow for bounded end-to-end communication [63, 42, 57, 56, 21, 5].
Population protocols [3] and variants [54, 59, 53] are collections of finite-state agents that
move passively, according to the dynamicity of the environment, and interact in pairs when
they come close to each other. The goal is typically for the population to compute (i.e.,
agree on) something useful or construct a desired network or structure in such an adversarial
setting. Another interesting direction assumes that the dynamicity of the network is a result

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 241

of randomness (this is also commonly the case in population protocols). Here, the interest
is on determining “good” properties of the dynamic network that hold with high probability
(w.h.p.; meaning with probability at least 1−1/nc for some constant c ≥ 1), such as a small
(temporal) diameter, and on designing protocols for distributed tasks [17, 6]. In all of the
mentioned subjects, there is always some sort of underlying temporal graph either assumed
or implied. For introductory texts on the above lines of research in dynamic distributed
networks the reader is referred to [16, 55, 70, 43].

Though static graphs1 have been extensively studied, for their temporal generaliza-
tion we are still far from having a concrete set of structural and algorithmic principles.
Additionally, it is not yet clear how the complexity of combinatorial optimization prob-
lems is affected by introducing to them a notion of time. In an early but serious attempt
to answer this question, it was observed [64] that many dynamic languages derived from
NP-complete languages can be shown to be PSPACE-complete. Even though that model
is not equivalent to the modern temporal graph models that concern us in this article, it
gives a first indication of the complexity increase that accompanies temporal versions of
combinatorial optimization problems, therefore (and also for historical reasons), we have
included a brief presentation of it in Section 8. Among the other few things that we do know
is that the max-flow min-cut theorem holds with unit capacities for time-respecting paths
[9]. Informally, a time-respecting path (or temporal path, but usually called journey in the
recent literature and also in this article) is like a usual path whose edges, additionally, use
strictly increasing times (or just nondecreasing in some cases); see Section 2 for formal
definitions. Additionally, [38] proved that, in temporal graphs, the classical formulation
of Menger’s theorem2 is violated and the computation of the number of node-disjoint s–z

paths becomes NP-complete. A reformulation of Menger’s theorem, which is valid for all
temporal graphs, was recently achieved in [49]. These results are discussed in Section 3.

Also recently, building on the distributed online dynamic network model of [42], [21],
among other things, presented offline centralized algorithms for the k-token dissemination
problem. In k-token dissemination, there are k distinct pieces of information (called tokens)
that are initially present in some distributed processes, and the problem is to disseminate
all the k tokens to all the processes in the dynamic network, under the constraint that one
token can go through an edge per round. These results, motivated by distributed computing
systems, are presented in Section 4. Another important contribution of the Distributed
Computing community to the theory of temporal graphs concerns the investigation of how
instantaneous properties (or properties satisfied for some larger but restricted time-windows)
relate to global properties of the temporal graph. Such properties may be continuously
connected instances, guaranteed connectivity or guaranteed propagation of information in
a given time-window length (holding for all times), small instantaneous diameter, etc. The
goal is to determine whether these properties imply some “good” temporal-connectivity
properties of the temporal graph as a whole, for example a small temporal diameter. These
investigations, together with the novel notions and metrics that have been proposed for
capturing such properties formally, are presented in Section 5.

1In this article, we use “static” to refer to classical graphs. This is plausible as the opposite of
“dynamic” that is also commonly used for temporal graphs. In any case, the terminology is still very
far from being standard.

2Menger’s theorem [48], which is the analogue of the max-flow min-cut theorem for undirected
graphs, states that the maximum number of node-disjoint s–z paths is equal to the minimum number
of nodes needed to separate s from z (see also [12] page 75).

242 MICHAIL

Another important problem is that of designing an “efficient” temporal graph, given
some requirements that the graph should meet. This problem was recently studied in [49],
and the authors introduced several interesting cost-minimization parameters for optimal
temporal network design. One of the parameters is the temporality of a graph G, the goal
being to create a temporal version of G minimizing the maximum number of labels of an
edge, and the other is the temporal cost of G, the goal being to minimize the total number
of labels used. Optimization of these parameters has to be performed subject to some
connectivity constraint. They proved several upper and lower bounds for the temporality
of some very basic graph families such as rings, directed acyclic graphs, and trees, as well
as a trade-off between the temporality and the maximum label of rings. Furthermore, they
gave a generic method for computing a lower bound of the temporality of an arbitrary graph
G with respect to (w.r.t.) the constraint of preserving a time-respecting analogue of every
simple path of G. Finally, they proved that computing the temporal cost w.r.t. the constraint
of preserving at least one time-respecting path from u to v whenever v is reachable from u

in G, is APX-hard. Most of these results are discussed in Section 6.
Other recent articles have focused on understanding the complexity of temporal

versions of classical graph problems and providing algorithms for them. For example, [60]
considered analogues of traveling salesman problems (TSP) in temporal graphs and on
the way introduced and studied temporal versions of other fundamental problems such as
Maximum Matching, Path Packing, Max-TSP, and Minimum Cycle Cover. One such
version of TSP is the problem of exploring the nodes of a temporal graph as soon as possible.
In contrast to the positive results known for the static case, strong inapproximability results
can be proved for the dynamic case [60, 23]. Still, there is room for positive results
for interesting special cases [23]. Another such problem is the Temporal Traveling
Salesman Problem with Costs One and Two (abbreviated TTSP(1,2)), a temporal
analogue of TSP(1,2) in which the temporal graph is a complete weighted graph with edge-
costs from {1, 2} and the cost of an edge may vary from instance to instance [60]. The goal
is to find a minimum cost temporal TSP tour. A first set of polynomial-time approximation
algorithms for TTSP(1,2) (the only ones known at the time of writing this article) was given
in [60]. The best approximation is (1.7 + ε) for the generic TTSP(1,2) and (13/8 + ε) for
its interesting special case, in which the lifetime3 of the temporal graph is restricted to n.
These and related results are presented in Section 7.

A family of temporal graphs that is of particular interest because its graphs underlie
many real-world systems, is the family of recurrent and periodic temporal graphs. A char-
acteristic example of a real system with a topology that changes with time but in a periodic
(and therefore also predictable) way, is the public transportation system. Apart from their
practical importance, such temporal graphs usually have the convenient property of being
susceptible to a succinct representation of their evolution (for example, there could be a
set of functions, e.g., linear functions, describing/generating the availability times of the
edges). Recurrent and periodic temporal graphs are discussed in Section 8. Additionally,
there are works that have considered random temporal graphs, another succinctly repre-
sentable model, for which the labels are chosen according to some probability distribution.
An obvious motivation for this is that the dynamicity of a great variety of real temporal

3Essentially, the lifetime of a temporal graph is equal to the number of steps for which the
temporal graph exists. Restricting it shortens the state space and can make some problems easier to
solve or approximate; for example, this seems to be the case for TTSP(1,2).

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 243

networks is the result of some underlying random process. But apart from this, randomness
can usually simplify the understanding of the behavior of several interesting network prop-
erties (e.g., many of the average properties of the Erdös–Renyi random graph model can be
calculated exactly in the limit) and can assist the efficient design of a temporal graph with
a desired property (by sacrificing correctness to hold w.h.p.), e.g., to have, for all u, v, a
time-respecting path from u to v. Therefore, we expect randomness to be a valuable tool in
the study of temporal graphs, as it has been for static graphs. We give a brief introduction
to such models in Section 9. Moreover, Section 2 provides all necessary preliminaries and
definitions and also a first discussion on temporal paths, and Section 10 concludes the
article and gives a selection of open problems and research directions.

As is always the case, not all interesting results and material could fit in a single
document. We list here some of them: [33] give an extensive overview of the literature
related to temporal networks from a diverse range of scientific domains. Very recently,
a more up-to-date survey (compared to that of [33]) was prepared [32] focusing on the
developments (mainly methods, systems modeled, and questions addressed) during the
period 2012–2015. Applications of temporal graphs are discussed in [30] and the great
importance of a systematic treatment of the subject is highlighted. [40] uses temporal graphs
to represent real datasets, shows how to derive various node metrics such as average temporal
proximity, average geodesic proximity, and temporal availability, and also gives a static
representation of a temporal graph (similar to the static expansion that we discuss in Section
2). [17] studied the flooding time (flooding is also known as information dissemination; see
a similar problem discussed in Section 4) in the following type of edge-Markovian temporal
graphs: if an edge exists at time t , then, at time t + 1, it disappears with probability q; and
if, instead, the edge does not exist at time t , then it appears at time t + 1 with probability p.
There are also several studies that have focused on temporal graphs in which every instance
of the graph is drawn independently at random according to some distribution [18], and
[31, 68, 37] (who researched in the context of dynamic gossip-based mechanisms), e.g.,
according to G(n, p). A model related to random temporal graphs is the random phone-
call model, in which each node, at each step, can communicate with a random neighbor
[20, 35]. Other authors [73, 25] have assumed that an edge might be available for a whole
time-interval [t1, t2] or several such intervals, not just for discrete moments, or that it
has time-dependent travel-times [39]. Finally, [1] studied the Dynamic Map Visitation
problem, in which a team of agents, operating in a dynamic environment, must visit a
collection of critical locations as quickly as possible.

2. MODELING AND BASIC PROPERTIES

When time is assumed to be discrete, a temporal graph (or digraph) is just a static
graph (or digraph) G = (V,E) with every edge e ∈ E labeled with zero or more natural
numbers. The labels of an edge may be viewed as the times at which the the edge is
available. For example, an edge with no labels is never available, whereas an edge with
labels of all the even natural numbers is available every even time. Labels could correspond
to seconds, days, years, or could even correspond to some artificial discrete measure of
time under consideration.

There are several ways of modeling formally discrete temporal graphs. One is to
consider an underlying static graph G = (V,E) together with a labeling λ : E → 2IN of G

assigning to every edge of G a (possibly empty) set of natural numbers, called labels. Then,
the temporal graph of G w.r.t. λ is denoted by λ(G). This notation is particularly useful when

244 MICHAIL

one wants to explicitly refer to and study properties of the labels of the temporal graph. For
example, the multiset of all labels of λ(G) can be denoted by λ(E), their cardinality is defined
as |λ| = ∑

e∈E |λ(e)|, and the maximum and minimum labels assigned to the whole temporal
graph are λmax = max{l ∈ λ(E)} and λmin = min{l ∈ λ(E)}, respectively. Moreover, we
define the age (or lifetime) of a temporal graph λ(G) as α(λ) = λmax − λmin + 1 (or simply
α when clear from context). Note that in the case of λmin = 1, we have α(λ) = λmax.

Another, often convenient, notation of a temporal graph D is as an ordered pair of
disjoint sets (V,A) such that A ⊆ (

V

2

) × IN in the case of a graph and with
(
V

2

)
replaced by

V 2 \ {(u, u) : u ∈ V } in the case of a digraph. The set A is called the set of time-edges.
A can also be used to refer to the structure of the temporal graph at a particular time. In
particular, A(t) = {e : (e, t) ∈ A} is the (possibly empty) set of all edges that appear in
the temporal graph at time t . In turn, A(t) can be used to define a snapshot of the temporal
graph D at time t , which is usually called the t th instance of D, and is the static graph
D(t) = (V,A(t)). So, it becomes evident that a temporal graph may also be viewed as a
sequence of static graphs (G1,G2, . . . , Gλmax).

Finally, it is typically very useful to expand in time the whole temporal graph and
obtain an equivalent static graph without losing any information. The reason for doing this
is mainly because static graphs are much better understood and there is a rich set of well-
established tools and techniques for them. So, a common approach to solving a problem
concerning temporal graphs is to first express the given temporal graph as a static graph and
then try to apply or adjust one of the existing tools that works on static graphs. Formally,
the static expansion of a temporal graph D = (V,A) is a DAG H = (S,E), defined as
follows. If V = {u1, u2, . . . , un}, then S = {uij : λmin − 1 ≤ i ≤ λmax, 1 ≤ j ≤ n} and
E = {(u(i−1)j , uij ′) : λmin ≤ i ≤ λmax and j = j ′ or (uj , uj ′) ∈ A(i)}. In other words,
for every discrete moment, we create a copy of V representing the instance of the nodes at
that time (called time-nodes). We may imagine the moments as levels or rows from top to
bottom, every level containing a copy of V . Then, we add outgoing edges from time-nodes
of one level only to time-nodes of the level below it. In particular, we connect a time-node
u(i−1)j to its own subsequent copy uij and to every time-node uij ′ such that (uj , uj ′) is an
edge of the temporal graph at time i. Observe that this construction includes all possible
vertical edges from a node to its own subsequent instance. These edges express the fact
that nodes are usually not oblivious and can preserve their own history in time (modeled as
propagating information to themselves). Nevertheless, depending on the application, these
edges may some times be omitted.

2.1. Journeys

As is the case with static graphs, the notion of a path is one of the most central
notions of a temporal graph; however, it has to be redefined to take time into account. A
temporal (or time-respecting) walk W of a temporal graph D = (V,A) is an alternating
sequence of nodes and times (u1, t1, u2, t2, . . . , uk−1, tk−1, uk) where ((ui, ui+1), ti) ∈ A,
for all 1 ≤ i ≤ k − 1, and ti < ti+1, for all 1 ≤ i ≤ k − 2. We call tk−1 − t1 + 1 the
duration (or temporal length) of the walk W , t1 its departure time and tk−1 its arrival time.
A journey (or temporal/time-respecting path) J is a temporal walk with pairwise distinct
nodes. In words, a journey of D is a path of the underlying static graph of D that uses
strictly increasing edge-labels. A u-v journey J is called foremost from time t ∈ IN if it
departs after time t and its arrival time is minimized. The temporal distance from a node
u at time t to a node v is defined as the duration of a foremost u-v journey from time t .

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 245

We say that a temporal graph D = (V,A) has temporal (or dynamic) diameter d, if d is
the minimum integer for which it holds that the temporal distance from every time-node
(u, t) ∈ V × {0, 1, . . . , α − d} to every node v ∈ V is at most d.

A nice property of foremost journeys is that they can be computed efficiently. In
particular, there is an algorithm that, given a source node s ∈ V and a time tstart, computes
for all w ∈ V \ {s} a foremost s-w journey from time tstart [49, 50]. The running time of the
algorithm is O(nα3(λ) + |λ|), where n here and throughout this article denotes the number
of nodes of the temporal graph. It is worth mentioning that this algorithm takes as input
the whole temporal graph D. Such algorithms are known as offline algorithms in contrast
to online algorithms to which the temporal graph is revealed on the fly. The algorithm is
essentially a temporal translation of the breadth-first search (BFS) algorithm (see e.g., [19,
p. 531]) with path length replaced by path arrival time. For every time t , the algorithm
picks, one after the other, all nodes that have been already reached (initially only the source
node s) and inspects all edges that are incident to that node at time t . If a time-edge (e, t)
leads to a node w that has not yet been reached, then (e, t) is picked as an edge of a foremost
journey from the source to w. This greedy algorithm is correct for the same reason that
the BFS algorithm is correct. An immediate way to see this is by considering the static
expansion of the temporal graph. The algorithm begins from the upper copy (i.e., at level 0)
of the source in the static expansion and essentially executes the following slight variation
of BFS: at step i + 1, given the set R of already reached nodes at level i, the algorithm first
follows all vertical edges leaving R in order to reach in one step the (i + 1)th copy of each
node in R, and then inspects all diagonal edges leaving R to discover new reachabilities.
The algorithm outputs as a foremost journey to a node u, the directed path of time-edges
by which it first reached the column of u (vertical edges are interpreted as waiting on the
corresponding node). The above algorithm computes a shortest path to each column of
the static expansion. Correctness follows from the fact that shortest paths to columns are
equivalent to foremost journeys to the nodes corresponding to the columns.

3. CONNECTIVITY AND MENGER’S THEOREM

Assume that we are given a static graph G and a source node s and a sink node z of
G.4 Two paths from s to z are called node-disjoint if they have only the nodes s and z in
common. Menger’s theorem [48], which is the analogue of the max-flow min-cut theorem
for undirected graphs, is one of the most basic theorems in the theory of graph connectivity.
It states that the maximum number of node-disjoint s–z paths is equal to the minimum
number of nodes that must be removed in order to separate s from z (see also [12, p. 75]).

It was first observed in [9] and then further studied in [38] that this fundamental
theorem of static graphs, is violated in temporal graphs if we keep its original formulation
but require it to hold for journeys instead of paths. In fact, the violation holds even for a
very special case of temporal graphs, known as single-labeled temporal graphs, in which
every edge has at most one label, unlike the more general multilabeled temporal graphs
that we have discussed so far. Even in such temporal graphs, the maximum number of
node-disjoint journeys from s to z can be strictly fewer than the minimum number of nodes
whose deletion leaves no s–z journey. For a simple example, observe in Figure 1 that there

4The sink is usually denoted by t in the literature. We use z instead because we reserve t to
refer to time moments.

246 MICHAIL

Figure 1 A counterexample of Menger’s theorem for temporal graphs (adopted from [38]). Each edge has a
single time-label that indicates its availability time.

are no two-node-disjoint journeys from s to z, but after deleting any one node (other than
s or z), there still remains an s–z journey. To see this, notice that every journey has to visit
at least two of the inner-nodes u2, u3, u4. If u2 is one of them, then a vertical obstacle is
introduced that cannot be avoided by any other journey. If u2 is not, then the only disjoint
path remaining is (s, u2, z), which is not a journey. However, any set of two inner vertices
has an s–z journey going through them, implying that any s–z separator must have size at
least 2. As shown in [38], this construction can be generalized to a single-labeled graph
with 2k − 1 inner nodes in which (i) every s–z journey visits at least k of these nodes,
ensuring again that there are no two-node-disjoint s–z journeys and (ii) there is a journey
through any set of k inner nodes, ensuring that every s–z separator must have size at
least k.

On the positive side, the violation does not hold if we replace node-disjointness by
edge-disjointness and node removals by edge removals. In particular, it was proved [9] that
for single-labeled temporal graphs, the maximum number of edge-disjoint journeys from
s to z is equal to the minimum number of edges whose deletion leaves no s–z journey,
that is, that the max-flow min-cut theorem of static graphs holds with unit capacities for
journeys in single-labeled temporal graphs. The construction (which we adopt from [38])
is simply an ad hoc static expansion for the special case of single-labeled temporal graphs.
Let G = (V,E) be the underlying graph of an undirected single-labeled temporal graph.
We construct a labeled directed graph G′ = (V ′, E′) as follows. For every {u, v} ∈ E, we
add in G′ two new nodes x and y and the directed edges (u, x), (v, x), (y, u), (y, v), (x, y).
Then, we relax all labels required so that there is sufficient “room” (w.r.t. time) to introduce
(by labeling the new edges) both a (u, x, y, v) journey and a (v, x, y, u) journey. The goal
is to journey both from u to v and from v to u in G′. An easy way to do this is as follows: if
t is the label of {u, v}, then we can label (u, x), (x, y), (y, v) by (t.1, t.2, t.3), respectively,
where t.1 < t.2 < t.3, and similarly for (v, x), (x, y), (y, u). Then, we construct a static
directed graph G′′ = (V ′′, E′′) as follows: for every u ∈ V , let y1, y2, . . . , yi, . . . be its
incoming edges and x1, x2, . . . , xj , . . . its outgoing edges. We want to preserve only the
time-respecting y, u, x traversals. To this end, for each one of the (yi, u) edges, we introduce
a node wi and the edge (yi, wi), and for each one of the (u, xi) edges, we introduce a node
vj and the edge (vj , xj), and we delete node u. Finally, we introduce the edge (wi, vj) iff
(yi, u), (u, xj) is time-respecting. This reduction preserves edge-disjointness and sizes of
edge separators, and if we add a super source and a super sink to G′′, the max-flow min-cut
theorem for static directed graphs yields the aforementioned result. Another interesting
thing is that reachability in G under journeys corresponds to (path) reachability in G′′, so

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 247

Figure 2 An example of a temporal graph. The dashed curves highlight the directions of three out-disjoint
journeys from s to z. The labels used by each of these journeys are indicated by the labels that are enclosed in
boxes.

that we can use BFS on G′′ to answer questions about foremost journeys in G, as we did
with the static expansion in Section 2.1.

Fortunately, the important negative result concerning Menger’s theorem has a
turnaround. In particular, it was proved in [49] that if one reformulates Menger’s theorem
in a way that takes time into account, then a very natural temporal analogue of Menger’s
theorem is obtained, which is valid for all (multilabeled) temporal networks. The idea is to
replace in the original formulation node-disjointness by node departure time disjointness
(or out-disjointness) and node removals by node departure time removals. When we say
that we remove node departure time (u, t), we mean that we remove all edges leaving u at
time t , i.e., we remove label t from all (u, v) edges (for all v ∈ V). So, when we ask “How
many node departure times are needed to separate two nodes s and z?” we mean how many
node departure times must be selected so that after the removal of all the corresponding
time-edges the resulting temporal graph has no s–z journey (note that this is a different
question from how many time-edges must be removed, and, in fact, the latter question does
not result in a Menger’s analogue). Two journeys are called out-disjoint if they never leave
from the same node at the same time (see Figure 2 for an example).

Theorem 3.1. (Menger’s Temporal Analogue [49]). Take any temporal graph λ(G),
where G = (V,E), with two distinguished nodes s and z. The maximum number of out-
disjoint journeys from s to z is equal to the minimum number of node departure times
needed to separate s from z.

The idea is to take the static expansion H = (S,A) of λ(G) and, for each time-node
uij with at least two outgoing edges to nodes different than ui+1j , add a new node wij

and the edges (uij , wij) and (wij , u(i+1)j1), (wij , u(i+1)j2), . . . , (wij , u(i+1)jk
). Then define an

edge capacity function c : A → {1, λmax} as follows: edges (uij , u(i+1)j) take capacity λmax,
and all other edges take capacity 1. The theorem follows by observing that the maximum
u01-uλmaxn flow is equal to the minimum of the capacity of a u01-uλmaxn cut, the maximum

248 MICHAIL

number of out-disjoint journeys from s to z is equal to the maximum u01-uλmaxn flow, and
the minimum number of node departure times needed to separate s from z is equal to the
minimum of the capacity of a u01-uλmaxn cut. See also Figure 3 for an illustration.

4. DISSEMINATION AND GATHERING OF INFORMATION

A natural application domain of temporal graphs is that of gossiping and, in general, of
information dissemination, mainly by a distributed set of entities (e.g., a group of people or
a set of distributed processes). Two early such examples were the telephone problem [8] and
the minimum broadcast time problem [69]. In both, the goal is to transmit some information
to every participant of the system, while minimizing some measure of communication or
time. A more modern setting, but in the same spirit, comes from the very young area of
distributed computing in highly dynamic networks [63, 42, 43, 16, 57, 56].

There are n nodes. In this context, nodes represent distributed processes. Note,
however, that most of the results that we will discuss concern centralized algorithms (and
in the case of lower bounds, these immediately hold for distributed algorithms as well).
The nodes communicate with other nodes in discrete rounds by interchanging messages.
In every round, an adversary scheduler selects a set of edges between the nodes and every
node may communicate with its current neighbors, as selected by the adversary, usually
by broadcasting a single message to be delivered to all its neighbors. So, the dynamic
topology behaves as a discrete temporal graph, where the ith instance of the graph is the
topology selected by the adversary in round i. The main difference, compared to the setting
of the previous sections, is that now (in all results that we will discuss in this section,
apart from the last one) the topology is revealed to the algorithms in an online and a
totally unpredictable way. An interesting special case of temporal graphs consists of those
temporal graphs that have connected instances. A temporal graph D is called continuously
connected (also known as 1-interval connected) if D(t) is connected for all times t ≥ 1
[63, 42]. Such temporal graphs have some very useful properties concerning information
propagation in a distributed setting; for example, if all nodes broadcast in every round all
information that they have heard so far, then in every round at least one more node learns
something new, which implies that a piece of information can in principle be disseminated
in at most n − 1 rounds. Naturally, the problem of information dissemination becomes
much more interesting and challenging if we do not allow nodes to transmit an unlimited
amount of information in every round, that is, if we restrict the size of the messages that
they can transmit.

An interesting problem of token dissemination in such a setting, called the k-token
dissemination problem, was introduced and first studied in [42]. In this problem, there
is a domain of tokens T , each node is assigned a subset of the tokens, and a total of
k distinct tokens is assigned to the nodes. The goal is for an algorithm (centralized or
distributed) to organize the communication between the nodes in such a way that, under any
dynamic topology (from those described previously), each node eventually terminates and
outputs (i.e., has learned) all k tokens. In particular, the focus here is on token-forwarding
algorithms. Such an algorithm is quite restricted in that, in every round r and for every
node u, it picks only a single token from those already known by u (or the empty token
⊥), and this token will be delivered to all the current neighbors of u by a single broadcast
transmission. Token-forwarding algorithms are simple, easy to implement, typically incur
low overhead, and have been extensively studied in static networks [45, 67]. We will present
now a lower bound from [42] on the number of rounds for token dissemination, that holds

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 249

Figure 3 (a) The static expansion of a temporal graph. Here, only two edges leave from the same node at the
same time: (u22, u33) and (u22, u34). (b) Adding a new node w22 and three new edges. This ensures that a node
departure time can be removed by removing a single diagonal edge: removing edge (u22, w22) removes all possible
departures from u22. This ensures that separation of s and z by node-departure times is equivalent to separation
by a usual static cut. (c) Adding capacities to the edges. Vertical edges take capacity λmax = 5 and diagonal edges
take capacity 1. (d) The maximum number of out-disjoint journeys from s to z is equal to the maximum flow from
s to z, and both are equal to 3.

250 MICHAIL

even for centralized token forwarding algorithms. Such centralized algorithms are allowed
to see and remember the whole state and history of the entire network, but they have to make
their selection of tokens to be forwarded without knowing what topology will be scheduled
by the adversary in the current round. So, first the algorithm selects and then the adversary
reveals the topology, taking into account the algorithm’s selection. For simplicity, it may
be assumed that each of the k tokens is assigned initially to exactly one (distinct) node.

Theorem 4.1. ([42]). Any deterministic centralized algorithm for k-token dissemination
in continuously connected temporal graphs requires at least �(n log k) rounds to complete
in the worst case.

The idea behind the proof is to define a potential function that charges by 1/(k − i)
the ith token learned by each node. So, for example, the first token learned by a node comes
at a cheap price of 1/k, whereas the last token learned costs 1. The initial total potential is
1, because k nodes have obtained their first token each, and the final potential (i.e., when
all nodes have learned all k tokens) is n · Hk = �(n log k). Then, it suffices to present
an adversarial schedule, i.e., a continuously connected temporal graph that forces any
algorithm to achieve in every round at most a bounded increase in potential. The topology
of a round can be summarized as follows. First, we select all edges that contribute no cost,
called free edges. An edge {u, v} is free if the token transmitted by u is already known by
v and vice versa. The free edges partition the nodes into l components C1, C2, . . . , Cl . We
pick a representative vi from each component Ci . It remains to construct a connected graph
over the vis. An observation is that each vi transmits a distinct token ti , otherwise at least two
of them should have been connected by a free edge (because two nodes interchanging the
same token cannot learn anything new). The idea is to further partition the representatives
into a small set of nodes that know many tokens each and a large set of nodes that know few
tokens each. We can call the nodes that know many tokens expensive, because, according
to the aforementioned potential function, a new token at a node that already knows many
tokens comes at a high price, and, similarly, we call those nodes that know few tokens
cheap. In particular, a node is expensive if it is missing at most l/6 tokens and cheap
otherwise. Roughly, a cheap node learns a new token at the low cost of at most 6/l, because
the cost of a token is inversely proportional to the number of missing tokens before the
token’s arrival. First, we connect the cheap nodes by an arbitrary line. Because there are at
most l such nodes and each of them obtains at most two new tokens (because it has at most
two neighbors on the line and each node transmits a single token), the total cost of this
component is at most 12, that is, bounded as desired. It remains to connect the expensive
nodes. It can be shown that there is a way to match each expensive node to a distinct cheap
node (i.e., by constructing a match between the expensive and the cheap nodes), so that no
expensive node learns a new token. So, the only additional cost is that of the new tokens
that cheap nodes obtain from expensive nodes. This additional cost is roughly at most 6, so
the total cost have been shown to be bounded by a small constant as required. It is worth
mentioning that [42], apart from the above lower bound, also proposed a simple distributed
algorithm for k-token dissemination that needs O(nk) rounds in the worst case to deliver
all tokens.

The mentioned lower bound can be further improved by exploiting the probabilistic
method [21]. In particular, it can be shown that any randomized token-forwarding algorithm
(centralized or distributed) for k-token dissemination needs �(nk/ log n) rounds. This lower
bound is within a logarithmic factor of the O(nk) upper bound [42]. As is quite commonly

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 251

the case in probabilistic results, the interesting machinery used to establish the lower bound
is in the analysis and not in the construction itself. Now all the representatives of the
connected components formed by the free edges are connected arbitrarily by a line. The
idea is to first prove the bound w.h.p. over an initial token distribution, in which each of the
nodes receives each of the k tokens independently with probability 3/4. It can be shown in
this case that, w.h.p. over the initial assignment of tokens, in every round there are at most
O(log n) new token deliveries and an overall of �(nk) new token deliveries must occur for
the protocol to complete. Finally, it can be shown via the probabilistic method, that, in fact,
any initial token distribution can be reduced to the above distribution for which the bound
holds. The above lower bounding technique, based on the probabilistic method, was applied
in [28] to several variations of k-token dissemination. For example, if the nodes are allowed
to transmit b ≤ k tokens instead of only one token in every round, then it can be proved
that any randomized token-forwarding algorithm requires �(n + nk/(b2 log n log log n))
rounds.

In [21], offline token forwarding algorithms were also designed, that is, algorithms
provided with the whole dynamic topology in advance. One of the problems that they
studied was that of delivering all tokens to a given sink node z as fast as possible, called the
gathering problem. We now present a lemma from [21] concerning this problem, mainly
because its proof constitutes a nice application of the temporal analogue of Menger’s
theorem presented in Section 3 (the simplified proof via Menger’s temporal analogue is
from [49]).

Lemma 4.2. ([21]). Let there be k ≤ n tokens at given source nodes and let z be an
arbitrary node. Then, if the temporal graph D is continuously connected, all the tokens can
be delivered to z, using local broadcasts, in O(n) rounds.

Let S = {s1, s2, . . . , sh} be the set of source nodes, let N (si) be the number of tokens
of source node si , and let the age of the temporal graph be n + k = O(n). It suffices to
prove that there are at least k out-disjoint journeys from S to any given z, such that N (si)
of these journeys leave from each source node si . Then, all tokens can be forwarded in
parallel, each on one of these journeys, without conflicting with each other in an outgoing
transmission and, because the age is O(n), they all arrive at z in O(n) rounds. To show
the existence of k out-disjoint journeys, we create a supersource node s and connect it to
the source node with token i (assuming an arbitrary ordering of the tokens from 1 to k)
by an edge labeled i. Then we shift the rest of the temporal graph in time by increasing
all other edge labels by k. The new temporal graph D′ has asymptotically the same age as
the original and all properties have been preserved. Now, it suffices to show that there are
at least k out-disjoint journeys from s to z, because the k edges of s respect the N (si)’s.
Due to Menger’s temporal analogue, it is equivalent to show that at least k departure times
must be removed to separate s from z. Indeed, any removal of fewer than k departure times
must leave at least n rounds, during which all departure times are available (because, due
to shifting by k, the age of D′ is n + 2k). Because the original temporal graph is connected
in every round, n rounds guarantee the existence of a journey from s to z.

5. INSTANTANEOUS VS. GLOBAL PROPERTIES

It has probably already become evident that a crucial property of temporal graphs is
connectivity. The connectivity of a static graph ensures that any pair of nodes in the graph

252 MICHAIL

can communicate and influence each other, even if this can happen only implicitly via one
or more intermediate nodes. Its analogue in a temporal graph is the notion of temporal
connectivity. An important characteristic of static connectivity is that it holds once and for
all, in the sense that a path between two nodes will be either present or missing forever.
Unfortunately, this is not the case in temporal graphs, where a journey from one node to
another might not be available in future steps. A possible definition of temporal connectivity
could be the following: a temporal graph D = (V,A) is temporally connected if, for every
ordered pair of nodes (u, v), there is a journey from u to v that arrives before the lifetime of
D expires. Though this definition allows every node to reach any other node, it is still useless
for many practical purposes. The reason is that, in contrast to static connectivity, it does not
provide us with some continuously available reachabilities between the nodes. A natural
way to avoid this is to assume an unlimited lifetime and require the temporal reachabilities
to hold repetitively. A very abstract way to formalize this is via the notion of the temporal
diameter, already defined in Section 2. Formally, if a temporal graph D = (V,A) has
temporal diameter d, then for every time-node (u, t) and every node v there is a journey
from (u, t) to v of duration at most d. This type of temporal connectivity is indeed persistent
because given any source node u, any sink node v, and any time t , we know that we can
start a walk from u at time t + 1 that will arrive at v by at most time t + d.

In several cases, the temporal graph under consideration may satisfy some stronger
guarantees. One such example is a temporal graph that comes with the guarantee that
every one of its instances is connected (as discussed in the previous section). An immediate
question to ask is whether and how such instantaneous properties (or properties that hold for
a particular time-window), which can be viewed as local properties in the static expansion
of the temporal graph, translate into more global properties, such as bounds on the temporal
diameter.

Let us begin from the continuously connected case. The fact that every instance of
the temporal graph is connected implies that its temporal diameter d is at most n − 1.
There is an intuitive constructive way to see this [42]. Take any node u and any time t . At
time t + 1 there must be an edge in the ({u}, V \ {u})-cut because otherwise, u would be
disconnected from the rest of the graph at that time. So there is a journey from u to some
other node arriving by t + 1. Denote by S the set of nodes, reached by u via a journey so
far u inclusive.5 At any time t ′ there must be an edge (w, z) in the (S, V \ S) cut. Observe
now that w ∈ S implies a journey (J, t ′′, w) from u to w arriving by time t ′′ < t ′, therefore
(J, t ′′, w, t ′, z) is a journey from u to z arriving by time t ′, which implies that z is added to
S and, in turn, that |S| increases by at least one in every step. As S = {u} at step 0, in n − 1
steps |S| must be equal to n, and we conclude that d ≤ n − 1. Of course, this could happen
much faster in some cases. For example, if it happens that every instance is a clique, then
|Su| becomes n in a single step, for every u ∈ V , and the temporal diameter is 1.

It could even hold that every instance Gi of the temporal graph is f -connected,
meaning that the removal of any f − 1 nodes from Gi does not disconnect it. Does this
stronger instantaneous property imply something better about the dynamic diameter of
the temporal graph? The answer is yes [42]. The dynamic diameter now becomes at most
	(n − 1)/f
 (i.e., O(n/f)). Take again a node u and any time t and initialize again the set

5Such a set S is typically called the future set of a time-node in the relevant literature (see e.g.,
[57]). A similar set that shows up often in the design and analysis of distributed protocols, is the past
set of a time-node u, containing all nodes that have reached u by a journey so far (see e.g., [44]).

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 253

S = {u} as before. At time t + 1 there must be at least f edges (u, vi) in the ({u}, V \ {u})-
cut, otherwise the removal of the at most f − 1 vis would disconnect u from V \ {u}. So, S
increases by at least f after the first step. Take now any time t ′. At time t ′ +1 there must be
edges (ui, vi) in the (S, V \ S)-cut to at least f distinct vis in V \ S, otherwise, the removal
of the at most f − 1 vis would disconnect S from V \ S. So, also in the generic case, S

increases by at least f , therefore, in at most 	(n − 1)/f
 steps, |S| is equal to n, which
implies that d ≤ 	(n − 1)/f
.

However, not all instantaneous guarantees can be used to infer useful global prop-
erties. For example, a good instantaneous diameter does not necessarily imply a good
temporal diameter. In a temporal star graph D in which all leaf-nodes (u1, u2, . . . , un−1)
but one (un) go to the center one after the other in a modular way, any message from the
node that enters the center last to the node that never enters the center needs n − 1 steps
to be delivered; that is, the temporal diameter of D is n − 1 even though the diameter of
every instance of D is just 2. This star graph, with additional self-loops at all nodes, was
used in [6] to show that, in contrast to the cover time of a random walk on a static graph,
which is always O(d · |E| · log n) (i.e., polynomial in n), the cover time of a random walk
on a temporal graph may be �(2n) (i.e., exponential in n). The reason is that the only way
for a random walk (that begins from un−1) that is on a leaf ui to reach un is to stay at ui

for n − 2 consecutive steps until ui goes to the center and then moves to un. Because, if the
walk moves sooner to the center, then, in the next step, that center will become a leaf and
the process will start over. The probability of staying for n − 2 consecutive steps at a leaf
is 1/2n−2, which gives the �(2n) expected time to cover all nodes.

Another issue has to do with the fact that such instantaneous guarantees are quite
strong and are not always present. For example, it is quite typical for a dynamic system
and its underlying temporal graph to be disconnected at any given time (or most of them)
but still to be temporally connected. In [57], the authors proposed some metrics that can be
used in such cases. These metrics capture properties that do not necessarily hold for every
given instance but instead may require several steps until they are satisfied.

The first such metric is called the connectivity time of a temporal graph, which is the
maximal time of keeping the two parts of any cut of the graph disconnected. Formally, the
connectivity time (ct) of a temporal graph D = (V,A) is the minimum k ∈ IN, such that,
for all times t ∈ IN, the static graph (V,

⋃t+k−1
i=t A(i)) is connected. In the extreme case

in which the ct is 1, every instance of the temporal graph is connected and we obtain a
continuously connected graph. However, greater ct allows for different cuts to be connected
at different times in the ct-step interval, and the resulting temporal graph can very well have
disconnected instances. By using elementary arguments as those used in the beginning of
this section, one can prove the following relation between the connectivity time and the
temporal diameter d of a temporal graph: ct ≤ d ≤ (n − 1)ct.

Another such metric is the outgoing influence time (oit), which is essentially the
maximal time until the t-state of a node influences the state of another node (by a journey
initiating at the former node and arriving at the latter) and captures the speed of information
spreading. Formally, it is defined as the minimum k ∈ IN such that for all u ∈ V and
all times t, t ′ ≥ 0 such that t ′ ≥ t , it holds that |S(u,t)(t ′ + k)| ≥ min{|S(u,t)(t ′)| + 1, n},
where S(u,t)(t ′) is just a more refined definition of the future set of a node u, already used
implicitly in some of the previous paragraphs, containing all nodes v ∈ V such that some
journey initiating from u after time t arrives at v at most by time t ′. Clearly, a continuously
connected temporal graph has oit 1. Still there are temporal graphs with all their instances
being disconnected that also have oit 1. A minimal such example is the following temporal

254 MICHAIL

Figure 4 Soifer’s temporal graph for n = 8 and t = 1, . . . , 7. In particular, in round 1, the graph consists of
the black solid edges, then, in round 2, the center becomes connected via a dotted edge to the next peripheral
node clockwise and all edges perpendicular to it (the remaining dotted ones) become available, and so on, always
moving clockwise. Figure adopted from [57]. c© O. Michail et al. 2014. Reproduced by permission of O. Michail
et al 2014. Permission to reuse must be obtained from the rightsholder.

graph, called the alternating matchings temporal graph [57]. Take a ring of an even number
of nodes n = 2l, partition the edges into two disjoint perfect matchings A and B (each
consisting of l edges) and alternate round after round between the edge sets A and B. In this
temporal graph, every instance consists of n/2 components, still, it is not difficult to see
that its oit is 1 and that its temporal diameter is n/2. It is also possible (but more difficult to
construct) for a temporal graph to have disconnected instances (in fact, always being perfect
matchings as before), oit 1, and additionally none of its edges to reappear in less than n−1
steps. Such a temporal graph can be defined (as shown in [57]) based on an edge-coloring
method [71]. The node set is V = {u1, u2, . . . , un}, where n = 2l, l ≥ 2. Place un on the
center and u1, . . . , un−1 on the vertices of a (n − 1)-sided polygon. For each time t ≥ 1,
make available only the edges {un, umt (0)} for mt (j) := (t − 1 + j mod n − 1) + 1 and
{umt (−i), umt (i)} for i = 1, . . . , n/2 − 1; that is, make available one edge joining the center
to a polygon-vertex and all edges perpendicular to it. (e.g., see Figure 4 for n = 8 and
t = 1, . . . , 7). We should also mention that the oit of a temporal graph is always a lower
bound on its ct, however, the inverse is violated in the worst possible way because there
are temporal graphs with oit 1 but ct = �(n) [57].

Most of the above special cases of temporal graphs have been exploited in the
distributed computing literature for solving the k-token dissemination problem (see Section
4) and the related problems of counting the number of nodes in the network and computing
functions over input values assigned to the nodes. First, as already mentioned in Section 4, in
the case of a continuously connected temporal graph, [42] gave a distributed algorithm that

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 255

solves all of the aforementioned problems in O(nk) rounds (in the worst case), provided that
the nodes (i.e., the distributed processes) have unique identifiers and broadcast messages
of size O(log n) bits. If there are no such identifiers, it was proved in [56] that a preelected
unique leader and the ability to transmit different messages to different neighbors (this is
in contrast to broadcast communication, where in every round a node transmits a single
message that is delivered to all its current neighbors) are all that one needs to assign unique
identifiers to the processes and terminate (and then execute the algorithm of [42] on the
named system). In the case of an f -connected temporal graph, it was shown in [42] that the
running time of the dissemination algorithm can be improved roughly by a factor of f , i.e.,
becomes O(nk/f). If the temporal graph D is guaranteed to be “more stable”, in the sense
that every window of T consecutive instances of D has an underlying connected spanning
subgraph that remains stable during the window (such temporal graphs, introduced in [42],
are called T -interval connected temporal graphs, and by setting T = 1 we obtain the
family of continuously connected temporal graphs as a special case), then T/2 tokens can
be disseminated in only n rounds, and the time-complexity of these problems can be further
improved by a factor of T/2 by “pipelining” transmissions through the edges that remain
stable. If the temporal graph has ct upper bounded by C and the distributed processes
know C, then there is a time-optimal algorithm that only needs time linear in the dynamic
diameter d and in T (however, using large messages) [57]. If, instead, the temporal graph
has oit upper bounded by K , then the above problems can be solved in O(d + K) rounds
(which is time optimal) by using messages of size O(n(log K + log n)), or in O(dn2 + K)
rounds by using messages of size O(log d + log n) [57].

6. DESIGN PROBLEMS

So far, we have mainly presented problems in which a temporal graph is provided
somehow (either in an offline or an online way) and the goal is to solve a problem on
that graph. Another possibility is when one wants to design a desired temporal graph. In
most cases, such a temporal graph cannot be arbitrary; it has to satisfy some properties
prescribed by the underlying application. This design problem was introduced and studied
in [49] (and its full version [50]). An abstract definition of the problem is that we are
given an underlying (di)graph G and we are asked to assign labels to the edges of G so
that the resulting temporal graph λ(G) minimizes some parameter while satisfying some
connectivity property. The parameters studied in [49] were the maximum number of labels
of an edge, called the temporality, and the total number of labels, called the temporal cost.
The connectivity properties of [49] had to do with the preservation of a subset of the paths
of G in time-respecting versions. For example, we might want to preserve all reachabilities
between nodes defined by G, in the sense that for every pair of nodes u, v such that there
is a path from u to v in G, there must be a temporal path from u to v in λ(G). Another such
property is to guarantee in λ(G) time-respecting versions of all possible paths of G. All
these can be thought of as trying to preserve a connectivity property of a static graph in the
temporal dimension while trying to minimize some cost measure of the resulting temporal
graph.

The provided graph G represents some given static specifications, for example, the
available roads between a set of cities or the available routes of buses in the city center.
In scheduling problems, it is very common to have such a static specification and to want
to organize a temporal schedule on it, for example to specify the precise time at which a
bus should pass from a particular bus stop while guaranteeing that every possible pair of

256 MICHAIL

stops is connected by a route. Furthermore, it is very common that any such solution should
at the same time take into account some notion of cost. Minimizing cost parameters may
be crucial because in most real networks, making a connection available and maintaining
its availability does not come for free. For example, in wireless sensor networks the cost
of making edges available is directly related to the power consumption of keeping nodes
awake, of broadcasting, of listening the wireless channel, and of resolving the resulting
communication collisions. The same holds for transportation networks in which the goal is
to achieve good connectivity properties with as few transportation units as possible.

For an example, imagine that we are given a directed ring u1, u2, . . . , un and we
want to assign labels to its edges so that the resulting temporal graph has a journey for
every simple path of the ring and at the same time minimizes the maximum number of
labels of an edge. In more technical terms, we want to determine or bound the temporality
of the ring subject to the all paths property. It is worth mentioning that the temporality
(and the temporal cost) is defined as the minimum possible achievable value that satisfies
the property, as, for example, is also the case for the chromatic number of a graph, which
is defined as the minimum number of colors that can properly color a graph. Looking at
Figure 5, it can be immediately observed that an increasing sequence of labels on the edges
of path P1 implies a decreasing pair of labels on edges (un−1, un) and (u1, u2). However,
path P2 uses (un−1, un) first and then (u1, u2), thus, it requires an increasing pair of labels
on these edges. It follows that in order to preserve both P1 and P2 we have to use a second
label on at least one of these two edges, thus, the temporality is at least 2. Next, consider
the labeling that assigns to each edge (ui, ui+1) the labels {i, n + i}, where 1 ≤ i ≤ n

and un+1 = u1. It is not difficult to see that this labeling preserves all simple paths of the
ring. Because the maximum number of labels that it assigns to an edge is 2, we conclude
that the temporality is also at most 2. Taking both bounds into account, we may conclude
that the temporality of preserving all simple paths of a directed ring is 2. Moreover, it
holds that the temporality of graph G is lower bounded by the maximum temporality of its

Figure 5 Path P2 forces a second label to appear on either (un−1, un) or (u1, u2).

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 257

Figure 6 A topological sort of a DAG. Edges are labeled by the indices of their tails (which are strictly
increasing from left to right) and this labeling converts every possible path of the DAG to a journey. For example,
(u1, u2, u3, u5, u7) is a journey because its labels (1, 2, 3, 5) are strictly increasing.

subgraphs, because if a labeling preserves all paths of G, then it has to preserve all paths
of any subgraph of G, paying every time the temporality of the subgraph. So, for example,
if the input graph G contains a directed ring then the temporality of G must be at least 2
(and could be higher depending on the structure of the rest of the graph).

Rings have very small temporality w.r.t. the all paths property, however, there is a
large family of graphs with even smaller. This is the family of directed acyclic graphs
(DAGs). DAGs have the very convenient property that they can be topologically sorted. In
fact, DAGs are the only digraphs that satisfy this property. A topological sort of a digraph
G is a linear ordering of its nodes such that if G contains an edge (u, v) then u appears
before v in the ordering. So, we can order the nodes from left to right and have all edges
pointing to the right. Now, we can assign to the nodes the indices 1, 2, . . . , n in ascending
order from left to right and then assign to each edge the label of its tail, as shown in Figure
6. In this way, every edge obtains exactly one label and every path of G has been converted
to a journey, because every path moves from left to right, thus, always moves to greater
node indices. Because these indices are also the labels of the corresponding edges, the path
has strictly increasing labels, which makes it a journey. This, together with the fact that the
temporality is at least 1 in all graphs with nonempty edge sets, shows that the temporality
of any DAG w.r.t. the all paths property is 1.

In both of the above examples, all paths could be preserved by using very few labels
per edge. One might immediately wonder whether converting all paths to journeys can
always be achieved with few labels per edge, e.g., a constant number of labels. However,
a more careful look at the previous examples provides a first indication that this is not
the case. In particular, the ring example suggests that cycles can cause an increase of
temporality, compared to graphs without cycles such as DAGs. Of course, a single ring
provides only a very elementary exposition of this phenomenon; however, as proved in [49],
this core observation can be extended to give a quite general method for lower bounding the
temporality. The idea is to identify a subset of the edges of G such that, for every possible
permutation of these edges, G has a path following the direction of the permutation. Such
subsets of edges, with many interleaved cycles, are called edge-kernels (see Figure 7 for an
example) and it can be proved that the preservation of all paths of an edge-kernel on k edges
yields a temporality of at least k. To see this, consider an edge-kernel K = {e1, e2, . . . , ek}
and order increasingly the labels of each edge. Now take an edge with maximum first label,
move from it to an edge of maximum second label between the remaining edges, then move
from this to an edge of maximum third label between the remaining edges, and so on. All
of these moves can be performed because K is an edge-kernel, thus, there is a path no
matter which permutation of the edges we choose. Because in step i we are on the edge
e with the maximum ith label, we cannot use the 1st, 2nd, . . ., ith labels of the next edge
to continue the journey because none of these can be greater than the ith label of e. So, we

258 MICHAIL

Figure 7 The graph consists of the solid and dashed edges. The long curves highlight some of the paths that the
graph defines. Edges e1, e2, and e3 constitute an edge-kernel of the graph, because for every possible permutation
of these edges the graph has a directed path (one of those highlighted in the figure) that traverses the edges in the
order defined by the permutation. As a result, at least 3 labels must be assigned on an edge in order to preserve a
temporal analogue of every possible path.

must necessarily use the (i + 1)th label of the next edge, which by induction shows that in
order to go through the kth edge in this particular permutation we need to use a kth label
on that edge.

Also, as stated, the temporality of a graph w.r.t. to the all paths property is always
lower bounded by the temporality of any of its subgraphs. As a consequence, we can obtain
a lower bound on the temporality of a graph or of a whole graph family by identifying a
large edge-kernel in it. For a simple application of this method, it is possible to show that
in order to preserve all paths of a complete digraph, at least �n/2� labels are required on
some edge. This is done by showing that complete digraphs have an edge-kernel of size
�n/2�. Moreover, it is possible to construct a planar graph containing an edge-kernel of
size �(n1/3), which yields that there exist planar graphs with temporality at least �(n1/3).
It is worth noting that the absence of a large edge-kernel does not necessarily imply small
temporality. In fact, it is an interesting open problem whether there are other structural
properties of the underlying graph that could cause a growth of the temporality.

The above show that preserving all paths in time can be very costly in several cases.
On the other hand, preserving only the reachabilities can always be achieved inexpensively.
In particular, it can be proved that for every strongly connected digraph G, we can preserve
a journey from u to v for every u, v for which there exists a path from u to v in G, by using
at most two labels per edge [49]. Recall the crucial difference: now it suffices to preserve
a single path from all possible paths that go from u to v. The result is proved by picking
any node u and considering an in-tree rooted at u. We then label the edges of each level i,
counting from the leaves, with label i, so that all paths of the tree become time-respecting
(this also follows from the fact that the tree is a DAG so, as we discussed previously, all
of its paths can be preserved with a single label per edge). Next, we consider an out-tree
rooted at u and we label that tree inversely, i.e., from the root to the leaves, and beginning
with the label i + 1. The first tree has a journey from every node to u arriving by time
i and the second tree has a journey from u to every other node beginning at time i + 1.
This shows that there is a journey from every node to every other node. Moreover, this
was achieved by using at most two labels per edge because every edge of the in-tree has a
single label and every edge of the out-tree has a single label and an edge is, in the worst
case, used by both trees, in which case it is assigned two labels. Furthermore, it can be
proved that the temporality w.r.t. reachabilities of any digraph G is upper bounded by the
maximum temporality of its strongly connected components. But we just saw that each

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 259

Figure 8 In this example, restricting the maximum label to be at most equal to the diameter d(G) forces the
temporality to be at least d(G).

component needs at most two labels, thus, it follows that two labels per edge are sufficient
for preserving all reachabilities of any digraph G.

Finally, we should mention an interesting relation between the temporality and the
age of a temporal graph. In particular, restricting the maximum label that the labeling is
allowed to use makes the temporality grow. To understand why this happens, consider the
case in which there are so many maximum-length shortest paths between different pairs
of nodes and that all must necessarily be preserved in order to preserve the reachabilities.
Now, if it happens that all of them pass through the same edge e but use e at many different
times, then e must necessarily have many different labels, one for each of these paths. A
simple example to further appreciate this is given in Figure 8. In that figure, each ui–vi

path is a unique shortest path between ui and vi and has, additionally, length equal to the
diameter (i.e., it is also a maximum one), so we must necessarily preserve all 5 ui–vi paths.
Note now that each ui–vi path passes through e via its ith edge. Each of these paths can
be preserved without violating d(G) only by assigning the labels 1, 2, . . . , d(G); however,
note that then edge e, must necessarily have all labels 1, 2, . . . , d(G). To see this, notice
simply that if any label i is missing from e then there is some maximum shortest path that
goes through e at step i. Because i is missing it cannot arrive sooner than time d(G) + 1,
which violates the preservation of the diameter. Additionally, the following trade-off for the
particular case of a ring can be proved [49]: if G is a directed ring and the age is (n−1)+k,
then the temporality of preserving all paths is �(n/k), when 1 ≤ k ≤ n − 1, and n − 1,
when k = 0.

7. TEMPORAL VERSIONS OF OTHER STANDARD GRAPH PROBLEMS:

COMPLEXITY AND SOLUTIONS

Though it is not yet clear how the complexity of combinatorial optimization prob-
lems is affected by introducing to them a notion of time, still, there is evidence that
complexity increases significantly and that totally novel solutions have to be developed
in several cases. In an early but serious attempt to answer the above question, Orlin [64]
observed that many dynamic languages derived from NP-complete languages can be shown

260 MICHAIL

to be PSPACE-complete. This increase in complexity has been also reported in [10, 73].
For example, [10] studied the computation of multicast trees minimizing the overall trans-
mission time and to this end proved that it is NP-complete to compute strongly connected
components in temporal graphs. Important evidence in this direction comes also from the
rich literature on labeled graphs, a more general model than temporal graphs, with dif-
ferent motivation and usually interested in different problems than those resulting when
the labels are explicitly regarded as time moments. Several articles in this direction have
considered labeled versions of polynomial-time solvable problems in which the goal is to
minimize/maximize the number of labels used by a solution. For example, the first labeled
problem introduced in the literature was the Labeled Minimum Spanning Tree problem,
which has several applications in communication network design. This problem is NP-hard
and many complexity and approximability results have been proposed (see e.g., [14, 41]).
However, the Labeled Maximum Spanning Tree problem has been shown polynomial
in [14]. In [15], the authors proved that the Labeled Minimum Path problem is NP-hard
and provided some exact and approximation algorithms. In [62], it was proved that the
Labeled Perfect Matching problem in bipartite graphs is APX-complete (see also [72]
for a related problem).

A primary example of this phenomenon, of significant increase in complexity when
extending a combinatorial optimization problem in time, is the fundamental Maximum
Matching problem. In its static version, we are given a graph G = (V,E) and we must
compute a maximum cardinality set of edges such that no two of them share an endpoint.
Maximum Matching can be solved in polynomial time by the famous Edmonds’ algorithm
[22] (the time is O(

√|V | · |E|) by the algorithm of [51]). Now consider the following
temporal version of the problem, called Temporal Matching in [60]. In this problem,
we are given a temporal graph D = (V,A) and we are asked to decide whether there is a
maximum matching M of the underlying static graph of D that can be made temporal by
selecting a single label l ∈ λ(e) for every edge e ∈ M . For a single-labeled matching to be
temporal, it suffices to guarantee that no two of its edges have the same label. Temporal
Matching was proved in [60] to be NP-complete. Then, the problem of computing a
maximum cardinality temporal matching is immediately NP-hard, because if we could
compute such a maximum temporal matching in polynomial time, we could then compare
its cardinality to the cardinality of a maximum static matching and decide Temporal
Matching in polynomial time. NP-completeness of Temporal Matching can be proved
by the sequence of polynomial-time reductions: Balanced 3SAT ≤P Balanced Union
Labeled Matching ≤P Temporal Matching. In Balanced 3SAT, which is known to
be NP-complete, every variable xi appears ni times negated and ni times non-negated and
in Balanced Union Labeled Matching we are given a bipartite graph G = ((X, Y), E),
labels L = {1, 2, ..., h}, and a labeling λ : E → 2L, every node ui ∈ X has precisely two
neighbors vij ∈ Y , and, additionally, both edges of ui have the same number of labels, and
we must decide whether there is a maximum matching M of G such that

⋃
e∈M λ(e) = L

[60].
Another interesting problem is the Temporal Exploration problem [60]. In this

problem, we are given a temporal graph and the goal is to visit all nodes of the temporal
graph by a temporal walk that possibly revisits nodes, minimizing the arrival time. The
walk is commonly thought to be performed by an agent. The version of this problem for
static graphs is well known as Graphic TSP. Though, in the static case, the decision version
of the problem, asking whether a given graph is explorable, can be solved in linear time,
in the temporal case it becomes NP-complete. Additionally, in the static case, there is a

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 261

(3/2 − ε)-approximation for undirected graphs [27] and a O(log n/ log log n) for directed
[4].

In contrast to these, it was proved in [60] that there exists some constant c > 0
such that Temporal Exploration cannot be approximated within cn unless P = NP,
even in temporal graphs consisting, in every instance, of two strongly connected compo-
nents (weakly connected with each other), by presenting a gap introducing reduction from
Hampath. Additionally, it was proved that even the special case in which every instance
of the temporal graph is strongly connected, cannot be approximated within (2 − ε), for
every constant ε > 0, unless P = NP. The reduction is from the version of HAMPATH, in
which a directed graph G with a special source node s is provided and the goal is to decide
whether G contains a hamiltonian path beginning from s. The constructed temporal graph
D consists of three strongly connected static graphs T1, T2, and T3 persisting for the inter-
vals [1, n1 − 1], [n1, n2 − 1], and [n2, 2n2 +n1], respectively (it will be helpful at this point
to look at Figure 9). We can restrict attention to instances of Hampath of order at least 2/ε,
without affecting its NP-completeness. We also set n2 = n2

1+n1 (in fact, we can set n2 equal
to any polynomial-time computable function of n1). If G is Hamiltonian, then for the arrival
time, OPT, of an optimum exploration, it holds that OPT = n1 + n2 − 1 = n2

1 + 2n1 − 1
while if G is not Hamiltonian, then OPT ≥ 2n2 + 1 = 2(n2

1 + n1) + 1 > 2(n2
1 + n1), which

can be shown to introduce the desired (2 − ε) gap.
The above inapproximability result has been recently improved [23] to O(n1−ε) for

any ε > 0. They first present a family of continuously connected temporal graphs that
require �(n2) steps to be explored. Any graph in the family is a star with n/2 c-nodes
and n/2 l-nodes. The c-nodes go one after the other in the center of the star in a modular
way and the l-nodes are always peripherals. Whenever an agent is on an l-node and wants
to move to another l-node, it has first to move to the center (which is a c-node) and
then wait n/2 steps until that c-node becomes again the center. So, it takes �(n2) steps
to visit all l-nodes. The inapproximability is again proved by reduction from Hampath.
The l-nodes are replaced by the graph G of Hampath and shortcut time-edges are added
between the l-components but in such a way that can only be used when G can be explored
by a Hamiltonian path. When G is Hamiltonian, the constructed temporal graph can be
explored by exploiting all shortcuts in linear time (i.e., O(n)). To the contrary, when G

is not Hamiltonian, the shortcuts cannot be used, or, if used, at least one node in each
l-component will remain unvisited. In both cases, the components have to be revisited in
the slow way of using the c-nodes, which gives an �(k2) time, where k is the number
of c-nodes that is equal to the number of l-components. By making k large enough, in
particular a large polynomial of the number of nodes of G, this becomes �(n2−ε). So, the
introduced gap is (O(n),�(n2−ε)), which establishes the O(n1−ε) inapproximability result.
In the same work, an explicit construction of continuously connected temporal graphs that
require �(n2) steps to be explored was also given.

On the positive side, it is not difficult to show that in continuously connected temporal
graphs, Temporal Exploration can be approximated within the temporal diameter of the
temporal graph [60]. In [23], the authors additionally studied the Temporal Exploration
problem in other interesting restricted families of continuously connected temporal graphs,
such as those whose underlying graph has treewidth k (a work explicitly concerned with
the treewidth of temporal graphs and its relation to the treewidth of static graphs is [47]),
is a 2 × n grid, a cycle, a cycle with a chord, or a bounded-degree planar graph, for which
they provided upper bounds on exploration time. Several of these results were proved in the
following interesting way. Instead of trying to explore by a single agent, the authors specified

262 MICHAIL

Figure 9 The temporal graph constructed by the reduction. (a) T1 (b) T2 (c) T3.

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 263

an exploration schedule for multiple agents and then applied the following reduction from
the multiagent case to the single-agent case.6

Lemma 7.1. ([23]). Let G = (V,E) be a connected graph with n vertices. If any con-
tinuously connected λ(G) can be explored in t steps with k agents, then any continuously
connected λ(G) can be explored in O((t + n)k log n) steps with one agent.

Take any continuously connected λ(G). Observe that all its temporal subgraphs of
lifetime t are also continuously connected and therefore (by assumption), can be explored in
t steps by k agents. Moreover, observe that all agents can return to the source node in n− 1
steps, because, as already discussed in Section 5, the temporal diameter of a continuously
connected temporal graph is at most n − 1.7 So, every k + (n − 1) steps, the k agents can
reexplore λ(G) and return to their origin. Call this a phase. Our goal is to have a single
agent a follow in each phase the walk of one of the k agents. In particular, a implements
the following greedy strategy: in the current phase it will mimic the walk of the agent that
will visit the largest number of nodes not yet visited by a. The crucial observation is that,
in every phase, all the k agents visit all n nodes, so the agent that visits the largest number
of nodes not yet visited by a must necessarily visit at least a 1/k fraction of these nodes.
This implies that, in every phase (lasting t + n steps), a reduces the number of unexplored
vertices by a factor of 1 − 1/k. So, after 	k ln n
 + 1 iterations the number of unexplored
nodes is fewer than n(1 − 1/k)k ln n ≤ ne− ln n = 1, therefore, all nodes have been explored.

Finally, we should mention that [26] is another study of the exploration problem in
temporal graphs with periodic edge-availabilities, from a distributed computing perspective.
We defer the description of these results until Section 8, where the focus is on temporal
graphs with recurrent and periodic properties.

Another demanding problem that becomes even more challenging in its temporal
version is the famous Traveling Salesman Problem, in which a graph with nonnegative
costs on its edge is provided, and the goal is to find a tour visiting every node exactly once
(called a TSP tour), of minimum total cost. In one version of the problem [60], the digraph
remains static and complete throughout its lifetime, but now each edge is assigned a cost
that may change from instance to instance. So, the dynamicity has now been transferred
from the topology to the costs of the edges. The goal is to find (by an offline centralized
algorithm) a temporal TSP tour of minimum total cost, where the cost of a tour is the
sum of the costs of the time-edges that it traverses. The authors of [60] introduced and
studied the special case of this problem in which the costs are chosen from the set {1, 2}.
In particular, there is a cost function c : A → {1, 2} assigning a cost to every time-edge
of the temporal graph (see Figure 10 for an illustration). This is called the Temporal
Traveling Salesman Problem with Costs One and Two and abbreviated TTSP(1,2).
Now observe that the famous (static) ATSP(1,2) problem is a special case of TTSP(1,2)
when the lifetime of the temporal graph D = (V,A) is restricted to n and c(e, t) = c(e, t ′)
for all edges e and times t, t ′. This immediately implies that TTSP(1,2) is also APX-hard
[66] and cannot be approximated within any factor less than 207/206 [36] and the same

6In the k-agent case, all k agents begin from the same source node and each node of the graph
must be visited by at least one of the agents.

7It is worth mentioning, here, that the problem of returning all agents to the origin might also
be viewed as a simplified version of Lemma 4.2, where now we do not limit the number of tokens
(here agents) that a node may transmit (allow to leave from it) per round.

264 MICHAIL

Figure 10 An instance of TTSP(1,2) consisting of a complete temporal graph D = (V,A), where V =
{u1, u2, u3, u4}, and a cost function c : A → {1, 2}, which is presented by the corresponding costs on the
edges. For simplicity, D is an undirected temporal graph. Observe that the cost of an edge may change many
times, e.g., the cost of u2u3 changes 5 times while that of u1u4 changes only once. Here, the lifetime of the tem-
poral graph is 6 and it is greater than |V |. The gray arcs and the nodes filled gray (meaning that the tour does not
make a move and remains on the same node for that step) represent the TTSP tour (u1, 1, u2, 2, u3, 3, u4, 6, u1),
which has cost 4 = |V | and, therefore, it is an optimum TTSP tour.

holds for the interesting special case of TTSP(1,2) with lifetime restricted to n, which we
will also discuss.

In the static case, one easily obtains a (3/2)-factor approximation for ATSP(1,2) by
computing a perfect matching, maximizing the number of ones and then patching the edges
together arbitrarily. This works well, because such a minimum cost perfect matching can
be computed in polynomial time in the static case by Edmonds’ algorithm [22] and its cost
is at most half the cost of an optimum TSP tour, because the latter consists of two perfect
matchings. The 3/2 factor follows because the remaining n/2 edges that are added during
the patching process cost at most n, which, in turn, is another lower bound to the cost of
the optimum TSP tour. This was one of the first algorithms known for ATSP(1,2). Other
approaches have improved the factor to the best currently known 5/4 [11]. Unfortunately,
as discussed in the beginning of this section, even the apparently simple task of computing
a matching that maximizes the number of ones is not that easy in temporal graphs. A simple
modification of those arguments yields that the problem remains NP-hard if we require
increasing consecutive labels of the matching to have a time difference of at least two.
Such time-gaps are necessary for constructing a time-respecting patching of the edges of
the matching. In particular, if two consecutive edges of the matching had a smaller time
difference, then the patching-edge would share time with at least one of them and the
resulting tour would not have strictly increasing labels.

Our inability to compute a temporal matching in polynomial time still does not
exclude the possibility to find good approximations for it and then hope to be able to

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 265

use them for obtaining good approximations for TTSP(1,2). Two main approaches were
followed in [60]. One was to reduce the problem to Maximum Independent Set (MIS) in
(k + 1) claw-free graphs and the other was to reduce it to k′-Set Packing, for some k and
k′ to be determined. The first approach gives a (7/4 + ε) approximation (= 1.75 + ε) for
the generic TTSP(1,2), and a (12/7 + ε) approximation (≈ 1.71 + ε) for the special case of
TTSP(1,2) in which the lifetime is restricted to n (the latter is obtained by approximating
a temporal path packing instead of a matching). The second approach improves these to
1.7 + ε for the general case and to 13/8 + ε = 1.625 + ε when the lifetime is n. In all
these cases, ε > 0 is a small constant (not necessarily the same in all cases) adopted from
the factors of the approximation algorithms for independent set and set packing.

We summarize now how the first of these approximations works. Consider the static
expansion H = (S,E) of D and an edge e = (u(i−1)j , uij ′) ∈ E. There are three types of
conflicts, each defining a set of edges that cannot be taken together with e in a temporal
matching (with only unit time differences): (i) Edges of the same row as e, because these
violate the unit time difference constraint, (ii) edges of the same column as u(i−1)j , because
these share a node with e, thus violating the condition of constructing a matching, and
(iii) edges of the same column as uij ′ , for the same reason as (ii). Next consider the graph
of edge conflicts G = (E,K), where (e1, e2) ∈ K iff e1 and e2 satisfy some of the above
constraints (observe that the node set of G is equal to the edge set of the static expansion
H). Observe that temporal matchings of D are now equivalent to independent sets of G.
Moreover, G is 4-claw free meaning that there is no 4-independent set in the neighborhood
of any node. To see that it is 4-claw free, take any e ∈ E and any set {e1, e2, e3, e4} of
four neighbors of e in G. There are only 3 constraints, thus, at least two of the neighbors,
say ei and ej , must be connected to e by the same constraint. But then ei and ej must also
satisfy the same constraint with each other, thus, they are also connected by an edge in
G. Now, from [29], there is a factor of 3/5 for MIS in 4-claw-free graphs, which implies
a (3/5)-approximation algorithm for temporal matchings. Simple modifications of the
above arguments yield a 1

2+ε
-approximation algorithm for temporal matchings with time-

differences at least two. Additionally, it can be proved that a (1/c)-factor approximation
for the latter problem implies a (2 − 1

2c
)-factor approximation for TTSP(1,2). All these

together yield a (7/4 + ε)-approximation algorithm for TTSP(1, 2) [60].
An immediate question, which is currently open, is whether there is a (3/2)-factor

approximation algorithm either for the general TTSP(1,2) or for its special case with lifetime
restricted to n (the reader may have observed that, in the temporal case, we have not yet
achieved even the simplest factor of the static case).

8. RECURRENT AND PERIODIC TEMPORAL GRAPHS

A quite common property of the underlying temporal graphs of many real-world
systems is recurrence, informally meaning the guaranteed reappearance of some instanta-
neous or temporal property in a given amount of time. Depending on the application and
the available knowledge about the system, recurrence may mean reappearance of a property
either in some unknown finite time or in some known finite time-bound. The most typical
example of a recurrent property is the availability of an edge. For instance, a temporal
graph could satisfy that whenever an edge appears, it must reappear in, at most, T steps.
Other such properties could be the reappearance of a whole instance, or of a particular
subgraph of it, or the reappearance of a particular journey (the latter is a temporal recurrent
property). A special type of recurrence, which is of particular interest and shows up in many

266 MICHAIL

applications, is periodicity. Informally, a recurrent property of a temporal graph is periodic
if its recurrence occurs at regular intervals. In the existing literature, periodicity usually
refers to the edges of the temporal graph. A way to define it is as follows: If G = (V,E) is
the underlying graph, every edge e in a E′ ⊆ E has an associated period pe and it holds
that e ∈ A(t) if and only if e ∈ A(t + pe), for all times t , when the lifetime is infinite,
and for all times t ≤ l − pe, in the case of a finite lifetime l. Observe that if E′ = E and
pe = p for all e ∈ E, then the temporal graph repeats itself after every p steps. The reader
is encouraged to consult [16] for a systematic classification of different types of temporal
graphs, including a classification of the recurrent and periodic ones.

A natural source of edge-periodic temporal graphs are the so-called carrier graphs
[26], where the time-edges are defined by the periodic movements of some mobile entities,
called carriers, over the edges of an underlying graph. In particular, an edge of the underlying
graph becomes available whenever a carrier passes over that edge. This type of temporal
graph is a natural abstraction of several real-world systems such as transportation networks
with inherent periodicity, such as public transports with fixed timetables (e.g., buses, trains,
planes, subway), low Earth orbiting (LEO) satellite systems, and security guards’ tours
[26, 16]. The focus in [26] was on solving the following exploration problem: An agent is
placed on an arbitrary node and the goal is for the agent to visit all nodes of the temporal
graph without ever waiting on some node (unless possibly its carrier waits on that node,
which can be modeled by self-loop time-edges). So the agent must always follow the
route of a carrier and can switch from one carrier to another if it happens that the two
carriers meet on the same node at the same time. It was proved that both of the nodes are
indistinguishable to the agent and the agent does not know the length of the longest route
(which is also the maximum period maxe∈E pe of the temporal graph), then the problem is
impossible to solve. However, if the agent can distinguish the nodes and the agent knows
either n or an upper-bound on the maximum period, then the problem becomes solvable.
Moreover, the authors studied the time-complexity of the problem, counted as usual by the
number of time-steps required to explore the graph, which in this case coincides with the
number of moves of the agent over the nodes of the graph, because the agent never waits
on some node. In particular, for a graph defined by k carriers, they proved that if pe = p

for all e ∈ E (which they called the homogeneous case), then �(kp) steps are necessary,
otherwise, the lower bound becomes �(kp2), where now p = maxe∈E pe. These bounds
hold even if the agent knows n, k, and p and has unlimited memory. Additionally, the
authors investigated the impact of the carriers’ routes structure on the complexity of the
exploration problem and to this end they they gave similar lower bounds for the special
cases of simple and circular routes. Finally, they gave matching upper bounds (by providing
optimal exploration algorithms) for all of their lower bounds. The impact of strengthening
the agent with the ability to wait at nodes was studied in [34]. There are also studies that
have been concerned with routing in periodic temporal graphs as, e.g., [46].

Another interesting family of temporal graphs consists of those temporal graphs
whose availability times are provided by some succinct representation. Generally speaking,
there are two main types of such compact representations: either a function, which is the
case that we will now discuss, or a probability distribution, which will be discussed in the
next section.

We now present a family of temporal graphs in which a set of functions describes the
availability times of the edges. The underlying graph is a complete static graph G = (V,E).
Each e ∈ E has an associated linear function of the form fe(x) = aex + be, where
x, ae, be ∈ IN≥0. For example, if an edge e has fe(x) = 3x + 4, then it is available at

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 267

times 4, 7, 10, 13, 16, Clearly, the temporal graph that we obtain in this manner is
D = (V,A) where A(r) = {e ∈ E : fe(x) = r for some x ∈ IN}. If we are additionally
provided with a lifetime l of the temporal graph then we just restrict A(r) to r ≤ l. This
model may be viewed as a very special case of the periodic model discussed so far. Even
though we are now free to delay the first appearance of an edge for any finite number of
steps (by setting be appropriately), still, every edge e, if observed after time be, has period
ae, thus the temporal graph, if observed after time maxe∈E be, satisfies the definition of
edge-periodicity. For example, if ae = 1 and be = 100, then, for the first 99 steps, e will be
unavailable and from that point on it will be forever available. The pattern obtained after
time be is a very special type of periodic pattern in which every edge is available once
and then it is unavailable for ae − 1 steps. It is not difficult to see that the definition of
periodicity given in the beginning of this section allows much more than this. For example,
it allows the availability pattern of an edge during its period to be arbitrarily nonlinear; the
availability times of a particular edge in the interval [1, pe] could be given by fe(x) = x2,
and then the periodic model just has to repeat the pattern forever. Such patterns cannot be
generated by the linear functions consider here.

There is an immediate way to obtain the rth instance of the temporal graph, for any
time r , based on the provided linear functions. For every e ∈ E, the rth instance contains
edge e iff (r − be)/ae is integer. It is important to note that, in this type of temporal graphs,
algorithmic solutions that depend at least linearly on the lifetime l are not acceptable.
The reason is that the lifetime l is provided in binary so a linear dependence on l grows
exponentially in the binary representation of l. Foremost journeys in such graphs can be
easily computed by a variation of the algorithm discussed in Section 2.1.

Now consider the following problem. We are given two edges e1 and e2 with corre-
sponding functions fe1 (x) = a1x+b1 and fe2 (x) = a2x+b2, and we are asked to determine
whether there is some instance having both edges, that is, to determine whether there exist
x1 and x2 such that fe1 (x1) = fe2 (x2) ⇔ a1x1 +b1 = a2x2 +b2 ⇔ a1x1 = a2x2 + (b2 −b1).
So, in fact, we are seeking for an x2 such that a1 | a2x2 + (b2 − b1) (where ‘|’ reads as “di-
vides”) and we have reduced our problem to the problem of determining whether c | ax +b

for some x. Now imagine a right-oriented ring of c nodes numbered 0, 1, . . . , c − 1. Con-
sider a process beginning from node b (mod c) and making clockwise jumps of length
a in each round (where a round corresponds to an increment of x by 1). We have that
the process falls at some point on node 0 iff c | ax + b for some x. Viewed in this way,
our problem is equivalent to checking whether ax + b ≡ 0 (mod c) is solvable for the
unknown x. This, in turn, may easily take the form ax ≡ b′ (mod c) (given that −b ≡ b′

(mod c)) for a > 0 and c > 0 (equalities to 0 correspond to trivial cases of our original
problem). Clearly, we have reduced our problem to the problem of detecting whether a
modular linear equation admits a solution that is well-known to be solvable in polyno-
mial time. In particular, a modular linear equation ax ≡ b′ (mod c) has a solution iff
gcd(a, c) | b′ (see e.g. [19, Corollary 31.21, p. 869]). Additionally, by solving the equation
we can find all solutions modulo c in O(log c + gcd(a, c)) arithmetic operations (see e.g.
[19, p. 871]).

Note that in the case where b1 = b2 = 0, then the answer to the problem is always
“yes” as a1x1 = a2x2 trivially holds for x1 = a2 and x2 = a1 (provided that a1a2 does
not exceed the lifetime of the network if a lifetime is specified). In particular, if we are
asked to determine the foremost instance containing both edges, then this reduces to the
computation of lcm(a1, a2) (where lcm is the least common multiple), which in turn reduces
to the computation of gcd(a1, a2) by the equation lcm(a1, a2) = |a1a2|/ gcd(a1, a2).

268 MICHAIL

Now let us slightly simplify our model in order to obtain a solution to a more generic
version of the problem. We restrict the edge functions aix + bi so that bi < ai , e.g.,
7x + 4. Then clearly, each such function corresponds to the whole equivalence subclass of
IN modulo ai containing bi , that is, [bi]ai

= {bi + xai : x ∈ IN}. So, for example, 7x + 4
corresponds to {4, 11, 18, 25, . . .} in contrast to 7x + 11, which was allowed before and
would just give the subset {11, 18, 25, . . .} of the actual class. Consider now the following
problem: “We are given a subset E′ of the edge set E and we want to determine whether
there is some instance of the temporal graph containing all edges in E′.” For simplicity,
number the edges in E′ from 1 to k. Formally, we want to determine the existence of
some time t such that, for all i ∈ {1, 2, . . . , k}, there exists xi such that t = aixi + bi ,
or equivalently, t ≡ bi (mod ai). Clearly, we have arrived at a set of simultaneous linear
congruences and we can now apply the following known results.

Theorem 8.1. (See e.g., [7, Theorem 5.5.5, p. 106]). The system of congruences t ≡ bi

(mod ai), 1 ≤ i ≤ k, has a solution iff bi ≡ bj (mod gcd(ai, aj)) for all i �= j . If the
solution exists, it is unique modulo lcm(a1, a2, . . . , ak).

Corollary 8.2. (See e.g., [7, Corollary 5.5.6, p. 106]). Let a1, a2, . . . , ak be integers,
each ≥ 2, and define a = a1a2 · · · ak , and a′ = lcm(a1, a2, . . . , ak). Given the system S

of congruences t ≡ bi (mod ai), 1 ≤ i ≤ k, we can determine if S has a solution, using
O(lg2 a) bit operations, and if so, we can find the unique solution modulo a′, using O(lg2 a)
bit operations.

We may now return to the original formulation of our model in which aix + bi does
not necessarily satisfy bi < ai . First keep in mind that tmin = maxi∈E′ {bi} is the minimum
time for every edge from E′ to appear at least once (in fact, at that time, the last edge of E′

appears). So, we cannot hope to have them all in one instance sooner than this. Now notice
that aix + bi is equivalent to aix

′ + (bi mod ai) for x ′ ≥ �bi/ai�; for example, 7x + 15 is
equivalent to 7x ′ + 1 for x ′ ≥ 2. In this manner, we obtain an equivalent setting in which,
again, bi < ai for all i but additionally for every i we have a constraint on x of the form
x ≥ qi . We may now ignore the constraints and apply Theorem 8.1 to determine whether
there is a solution to the new set of congruences, because there is a solution that satisfies the
constraints iff there is one; if we ignore the constraints (the reason being that the constraints
together form a finite lower bound and there is an infinite number of solutions). If there
is a solution, it will be a unique solution modulo lcm(a1, a2, . . . , ak) corresponding to an
infinite number of solutions if expanded. From these solutions we just have to keep those
that are not less than tmin (in case we want to find the actual solutions to the system).

Consider now the following type of bounded edge recurrence. Assume an undirected
underlying graph G = (V,E), which is additionally sparse, having only O(n) edges.
For every edge e ∈ E there is a constant integer Re such that the maximum number of
consecutive steps in which e is unavailable is at most Re and at least Re/c, for some constant
c > 1. Assume additionally that the resulting temporal graph has connected instances. It
was proved in [23] that such a temporal graph can be explored in O(n) steps. The idea is to
first round down each Re to the nearest power of 2 and obtain a new set of values R′

e. Then,
calculate a minimum spanning tree T of G w.r.t. to the edge costs R′

e and explore G by
following an Euler tour of T . Such a tour visits every e ∈ T at most twice, and the walk has
to wait at most Re steps for an e ∈ T to become available. Consequently, if the walk begins at
time 1, it must have visited all nodes at most by time

∑
e∈T 2Re = 2

∑
e∈T Re < 4

∑
e∈T R′

e

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 269

(because Re < 2R′
e, for all e ∈ E). It remains to prove that

∑
e∈T R′

e = O(n). The proof
strategy is interesting and it is worth describing. Take any k ≥ 0 such that T contains at least
one edge e with R′

e = 2k . Temporarily removing the edges of T with R′
e = 2k partitions T

into some components Ci . Now, add the removed edges and also all intercomponent edges
of G. The idea is to take the 2k cost of an edge leaving a component Ci and distribute it
to all edges (set Ei) leaving Ci (and joining it to other components) in such a way that
each edge will receive a sufficiently small charge. The above partitioning process will be
repeated for all k ≥ 0 for which there is an e ∈ T with cost 2k , and we must ensure that in
the end of all repetitions every edge of G will have received only a constant charge. This
will imply that the total cost of T has been distributed to the edges of G in such a way
that every edge of G has received a charge upper bounded by a constant H and as G has
O(n) edges, the total cost of T must have been at most H · O(n) = O(n), which is what
we wanted to prove. In fact, H turns out to be equal to 4c, where c is the constant assumed
in the Re/c minimum consecutive unavailability of an edge e. For the precise charging
mechanism, which is quite technical, relying on the facts that every intercomponent edge
must have cost at least 2k (otherwise it could be used as a swapping edge to obtain a tree
cheaper than T) and that in every step at least one of the edges of each Ei must be present
(due to the continuous connectivity assumption), the reader is referred to [23].

Finally, we should say a few things about the temporal graph model considered by
[64, 65] that we briefly mentioned in Section 1. In that model, an underlying digraph
G = (V,E) is provided with each e ∈ E having a single integer label (possibly negative).
The labels in this case represent transit times, that is, if a walk at a node u chooses to
cross edge e = (u, v) at time t , then it will arrive at node v at time t + λ(e) (where now
λ : E → Z). Then G induces the following type of temporal graph: Consider an infinite
static expansion such as those that we have already seen, without yet any edges. For every
time i and every edge e = (uj , uk) ∈ E with transit time t = λ(e) add edge (uij , u(i+t)k)
in the static expansion, unless i + t < 0 (in case of a negative t) in which case the edge is
not added. Observe that if t = 0, then the edge is an intrarow one; if t < 0 then the edge is
from one row to a previous one, and if |t | > 1 then an edge connects nonconsecutive rows
of the static expansion. None of these cases can be produced by the temporal graph model
with which we are concerned in this article. Note also that in the above model the temporal
graph repeats itself in every step, so we could say that it is a 1-periodic temporal graph.
Though being very different from the models considered in the modern treatment of the
subject, still, it is a periodic temporal model and also the results proved for it are resounding
and possibly give some first indications of what to expect when adding a time dimension
to combinatorial optimization problems. In particular, it was proved [65] that connected
components, Eulerian paths, odd length circuits, and minimum average cost spanning trees
can be solved in polynomial time. It was observed that in each case the problem reduces to
a static-graph problem, which, however, is in no case the same as the temporal problem.
For example, determining the strongly connected components of a temporal graph does
not reduce to determining the strongly connected components of a static graph unless one
allows the static graph to have an exponential number of nodes. Also, it was proved that
the (apparently simple) problem of determining if there is a directed path from u to v in
such a temporal graph is NP-complete. Finally, in an earlier work, [64] had focused on the
complexity of classical difficult graph-problems and had showed that many of them that
are NP-complete actually become PSPACE-hard when defined on such temporal graphs.

270 MICHAIL

9. RANDOM TEMPORAL GRAPHS

Another model of temporal graphs with succinct representation, is the model of
random temporal graphs. Consider the case in which each edge (of an underlying clique) just
picks independently and uniformly at random a single time-label from [r] = {1, 2, . . . , r}.
So, it gets labeled t ∈ [r] with probability p = r−1. We mainly present here a set of
unpublished results concerning this model, jointly developed by the author of the present
article and Paul Spirakis in 2012. We also discuss results from [2], which is a very recent
study concerned with the same issue.

We first calculate the probability that given a specific path (u1, u2, . . . , uk+1) of length
k, a journey appears on this path. We begin with the directed case. First, let us obtain a
weak but elegant upper bound. Partition [r] into R1 = {1, . . . , �r/2�} and R2 = {�r/2� +
1, . . . , r}. Clearly, P(journey) ≤ P(no R2R1 occurs) because any journey assignment cannot
have two consecutive selections such that the first one is from R2 and the second from R1.
So, it suffices to calculate P(no R2R1 occurs). Notice that the assignments in which no R2R1

occurs are of the form (R1)i(R2)j for i+j = k, e.g. R1R1R2R2R2 and there are k+1 of them.
In contrast, all possible assignments are 2k corresponding to all possible ways to choose
k times with repetition from {R1, R2}. So, P(no R2R1 occurs) = k/2k (as all assignments
are equiprobable, with probability 2−k) and we conclude that P(journey) ≤ k/2k , which,
interestingly, is independent of r; e.g., for k = 6 we get a probability of at most 0.09375
for a journey of length 6 to appear.

For any specific assignment of labels t1, t2, . . . , tk of this path, where ti ∈ [r] ([r] =
{1, 2, . . . , r}), the probability that this specific assignment occurs is simply pk . So, all
possible assignments are equiprobable and we get

P(journey) = # strictly increasing assignments

all possible assignments
=

(
r

k

)
rk

,

where
(
r

k

)
follows from the fact that any strictly increasing assignment is just a unique

selection of k labels from the r available, and any such selection corresponds to a unique
strictly increasing assignment. So, for example, for k = 2 and r = 10 we get a probability
of 9/20, which is a little smaller than 1/2, as expected, because there is an equal number
of strictly increasing and strictly decreasing assignments, but we also lose all remaining
assignments, which, in this case, are only the ties (that is, those for which t1 = t2).

Now, it is easy to compute the expected number of journeys of length k. Let S be the
set of all directed paths of length k and let Yp be an indicator random variable which is 1 if a
journey appears on a specific p ∈ S and 0 otherwise. Let also Xk be a random variable giving
the number of journeys of length k. Clearly, E(Xk) = E(

∑
p∈S Yp) = ∑

p∈S E(Yp) = |S|·P(a
journey appears on a specific path of length k) = n(n−1) · · · (n−k)

(
r

k

)
r−k ≥ (n−k)k

(
r

k

)
r−k .

Now, if we set n ≥ r/
(
r

k

)(1/k) + k, we get E(X) ≥ 1. A simpler, but weaker, formula can be
obtained by requiring n ≥ r + k. In this case, we get E(X) ≥ (

r

k

)
. So, for example, a long

journey of size k = n/2 that uses all available labels is expected to appear, provided that
n ≥ 2r (to see this, simply set k = r).

We will now try to obtain bounds on the probability that a journey of length k appears
on a random temporal graph. Let us begin from a simple case, namely the one in which
k = 4, that is, we want to calculate the probability that a journey of length 4 appears. Let
the r.v. X be the number of journeys of length 4 and let Xp be an indicator for path p ∈ S,
where S is the set of all paths of length 4. Denote n(n−1) · · · (n−k) by (n)k+1 First note that

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 271

E(X) = (n)5
(
r

4

)
r−4 = �(n5) and clearly goes to ∞ for every r . However, we cannot yet

conclude that P(4 − journey) is also large. To show this we shall apply the second moment
method. We will make use of Chebyshev’s inequality P(X = 0) ≤ Var(X)/[E(X)]2 and of
the following well-known theorem:

Theorem 9.1. ([58]). Suppose X = ∑n
i=1 Xi , where Xi is an indicator for event Ai .

Then,

Var(X) ≤ E(X) +
∑

i

P[Ai]
∑
j :j∼i

P(Aj | Ai)

︸ ︷︷ ︸
�i

,

where i ∼ j denotes that i depends on j . Moreover, if �i ≤ � for all i, then

Var(X) ≤ E(X)(1 + �).

So, in our case, we need to estimate �p = ∑
p′∼p P(Ap′ | Ap). If we show that �p ≤

� for all p ∈ S, then we will have that Var(X) ≤ E(X)(1 + �). If we additionally manage
to show that �/E(X) = o(1), then � = o(E(X)), which tells us that Var(X) = o([E(X)]2).
Putting this back to Chebyshev’s inequality we get that P(X = 0) = o(1) as needed.

So, let us try to bound �p appropriately. Clearly, p′ cannot be a journey if it visits
some edges of p in inverse order (than the one they have on p). Intuitively, the two paths
must have the same orientation. We distinguish cases based on the number of edges shared
by the two paths. First of all, note that if p′ and p have precisely i edges in common, then
P(Ap′ | Ap) ≤ (

r

k−i

)
/rk−i , which becomes

(
r

4−i

)
/r4−i in our case. The reason is that the

k − i edges of p′ that are not shared with p must at least obtain an increasing labeling. If
we also had taken into account that that labeling should be consistent to the labels of the
shared edges, then this would decrease the probability. So, we just use an upper bound,
which is sufficient for our purposes.

Case 1: 1 shared edge. If a single edge is shared, then there are k
(
n−k+1
k−1

)
(k − 1)!4 =

16 · 3!
(
n−5

3

)
different paths p′ achieving this because there are k ways to choose the shared

edge,
(
n−k+1
k−1

)
to choose the missing nodes (nodes of p′ not shared with p), (k − 1)! ways

to order those nodes, and, in this particular example, 4 ways to arrange the nodes w.r.t. the
shared edge. In particular, we can put all nodes before the shared edge, all nodes after, 2
nodes before and 1 node after, or 1 node before and 2 nodes after. We conclude that the
probability that

∑
|p′∩p|=1 P(Ap′ | Ap) ≤ 16 · 3!

(
n−5

3

)(
r

3

)
/r3 = O(n3).

Case 2: 2 shared edges. In this case, we can have all possible
(
k

2

) = (4
2

)
2-sharings.

Let us denote by e1, e2, e3, e4 the edges of p. For the sharings (e1, e2), (e2, e3), and (e3, e4)
we get in total 3

(
n−k−1
k−2

)
(k − 2)!4 = 24

(
n−5

2

)
paths. For (e1, e3), (e2, e4) we get 2(n −

k − 1) = 2(n − 5). For (e1, e4) we get (n − 5) in case we connect the 2 edges by an
intermediate node (i.e. go from the head of e1 to some u not in p and then form u to
the tail of e4) and 2(n − 5) in case we connect e1 directly to e4 and use an external
node either before or after, so in total 3(n − 5) paths. Putting these all together we get∑

|p′∩p|=2 P(Ap′ | Ap) ≤ [24
(
n−5

2

) + 5(n − 5)]
(
r

2

)
/r2 = O(n2).

Case 3: 3 shared edges. Here there are just 2 choices for the 3 shared edges, namely
(e1, e2, e3) and (e2, e3, e4), the reason being that if the edges are not consecutive then a fourth
edge must be necessarily shared and the 2 paths would coincide. As there are (n−k−1) ways

272 MICHAIL

to choose the missing node and 2 ways to arrange that node we get 2(n−k−1)2 = 4(n−5)
and consequently

∑
|p′∩p|=3 P(Ap′ | Ap) ≤ 4(n − 5)

(
r

1

)
/r1 = O(n).

So, we have �p ≤ � = O(n3) and �/E(X) = O(n3)/�(n5) = o(1) which applied
to Theorem 9.1 gives Var(X) ≤ E(X)(1 + �) = o([E(X)]2) and this in turn applied
to Chebyshev’s inequality gives the desired P(X = 0) ≤ Var(X)/[E(X)]2 = o(1). We
conclude that:

Theorem 9.2. ([58]). For all r ≥ 4, almost all random temporal graphs contain a journey
of length 4.

Now let us turn back to our initial (n)k+1
(
r

k

)
r−k formula of E(X) (which holds for all

k). This gives E(X) ≥ (n)k+1/kk , which, for all k = o(n) and all r ≥ k, goes to ∞ as n

grows. We will now try to generalize the ideas developed in the k = 4 case to show that
for any not too large k almost all random temporal graphs contain a journey of length k.
Take again a path p of length k and another path p′ of length k that shares i edges with p.
We will count rather crudely but in a sufficient way for our purposes. As again the shared
edges can be uniquely oriented in the order they appear on p, there are at most

(
k

i

)
ways

to choose the shared edges (at most because some selections force more than i sharings to
occur). Counting the tail of the first edge and the head of every edge, these i edges occupy
at least i + 1 nodes, so at most k + 1 − i − 1 = k − i nodes are missing from p′ and thus
there are at most

(
n−k−1

k−i

)
ways to choose those nodes. Moreover there are at most (k − i)!

ways to permute them on p′. Finally, we have to place those nodes relative to the i shared
edges. In the worst case, the i edges define i + 1 slots that can be occupied by the nodes in(
k−i+(i+1)−1

(i+1)−1

) = (
k

i

)
ways. In total, we have N = (

k

i

)2(n−k−1
k−i

)
(k − i)!

(
k

i

)
different paths and

the corresponding probability is

∑
|p′∩p|=i

P(Ap′ | Ap) ≤ N

(
r

k − i

)
/rk−i ≤

(
k

i

)2(
n − k − 1

k − i

)

≤
(

k2

i

)(
n − k − 1

k − i

)
.

So we have that

�p =
k−1∑
i=1

∑
|p′∩p|=i

P(Ap′ | Ap) ≤
k∑

i=0

(
k2

i

)(
n − k − 1

k − i

)

=
(

n + k2 − k − 1

k

)
≤

(
n + k2

k

)
= �.

The first equality follows from the Chu-Vandermonde identity
∑k

i=0

(
m

i

)(
z

k−i

) = (
m+z

k

)
by

setting z = n − k − 1 and m = k2 as needed in our case.
Thus, we have � = (

n+k2

k

)
and for k2 = o(n) we have � ∼ (n)k/k!. At the

same time we have E(X) = (n)k+1
(
r

k

)
/rk ∼ (n)k+1/k! (for large r), thus �/E(X) ∼

(n)k/(n)k+1 = o(1) as needed. So we have Var(X) = o([E(X)]2) and we again get that
P(X = 0) ≤ Var(X)/[E(X)]2 = o(1). Captured in a theorem:

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 273

Theorem 9.3. ([58]). For all k = o(
√

n) and all r = �(n), almost all random temporal
graphs contain a journey of length k.

However, there seems to be some room for improvements if one counts more carefully.
Now take any two nodes s and t in V . We want to estimate the arrival time of a

foremost journey from s to t . Let X be the random variable of the arrival time of the
foremost s–t journey. Let us focus on P(X ≤ 2). Denote by l(u, v) the label chosen by
edge (u, v). Given a specific node u ∈ V \ {s, t} we have that P(l(s, u) �= 1 or l(u, t) �=
2) = 1 − P(l(s, u) = 1 and l(u, t) = 2) = 1 − r−2. Thus, P(∀u ∈ V \ {s, t} : l(s, u) �=
1 or l(u, t) �= 2) = (1 − r−2)n−2 and we have

P(X ≤ 2) = 1 − P(X > 2)

= 1 − P(l(s, t) /∈ {1, 2})P(∀u ∈ V \ {s, t} : l(s, u) �= 1 or l(u, t) �= 2)

= 1 − r − 2

r
(1 − r−2)n−2

≥ 1 − (1 − r−2)n−2

≥ 1 − e−(n−2)/r2
, for n ≥ 2 and r >

√
n − 1.

So, even if r = �(
√

n), we have that P(X ≤ 2) → 1 − 1/ec (for some constant
c ≤ 1) as n goes to infinity, so we have a constant probability of arriving by time 2 at t .
Clearly, for smaller values of r (smaller w.r.t. n) we get even better chances of arriving
early. For another example, let n = 104 and r = √

n/ log n = 25. As P(X ≤ 2) is almost
equal to 1 − (1 − r−2)n−2, we get that it is almost equal to 1 in this particular case. For even
greater r , e.g. r = √

n = 100, we still go very close to 1.
The following proposition gives a bound on the temporal diameter of undirected

random temporal graphs by exploiting well-known results of the Erdös–Renyi (G(n, p))
model (cf. [13]).

Proposition 9.4. ([58]). Almost no temporal graph has temporal diameter less than
[(ln n + c + o(1))/n]r .

To see this, observe that if k < [(ln n + c + o(1))/n]r , then p = k/r < (ln n +
c + o(1))/n. Consider now the temporal subgraph consisting only of the first k labels
[k] = {1, 2, . . . , k}. By the connectivity threshold of the static G(n, p) model, this subgraph
is almost surely disconnected, implying that almost surely the temporal diameter is greater
than k.

So, for example, if r = O(n), almost no temporal graph has temporal diameter
o(log n). Note, however, that the above argument is not sufficient to show that almost every
temporal graph has temporal diameter at least [(ln n+c+o(1))/n]r . Though it shows that in
almost every graph the subgraph consisting of the labels [k], for k ≥ 	r(ln n+ c+o(1))/n

is connected, it does not tell us whether that connectivity also implies temporal connectivity
(that is, the existence of journeys).

We should also mention that [2] studied the temporal diameter of the directed random
temporal graph model for the case of r = n and proved that it is �(log n) w.h.p. and in
expectation. In fact, they showed that information dissemination is very fast w.h.p. even in
this hostile network with regard to availability. Moreover, they showed that the temporal

274 MICHAIL

diameter of the clique is crucially affected by the clique’s lifetime, α, e.g., when α is
asymptotically larger than the number of vertices, n, then the temporal diameter must be
�(α

n
log n). They also defined the Price of Randomness metric in order to capture the cost to

pay per link and guarantee temporal reachability of all node-pairs by local random available
times w.h.p..

The idea of [2] to establish that the temporal diameter is O(log n) is as follows. Given
an instance of such a random temporal clique, the authors pick any source node s and any
sink node t and present an algorithm trying to construct a journey from s arriving at t at
most by time O(log n). The algorithm expands on two fronts, one beginning from s and
moving forward (in fact, an out-tree rooted at s) and one from t moving backward (an in-tree
rooted at t). Beginning from s, all neighbors that can be reached in one step in the interval
(0, c1 log n], are visited. Next, the front moves on to all neighbors of the previous front that
can be reached in one step in the interval (c1 log n, c1 log n + c2]. The process continues in
the same way, every time replacing the current front by all its neighbors that can be reached
in the next c2 steps. A similar backward process is executed from t . These processes are
executed for d = �(log n) steps, resulting in the final front of s and the final front of t .
Note that the front of t begins from the interval (2c1 log n + (2d − 1)c2, 2c1 log n + 2dc2]
and every time subtracts a c2. Finally, the algorithm tries to find an edge from the final
front of s to the final front of t with the appropriate label in order to connect the journey
from s to the journey to t in a time-respecting way and obtain the desired s–t journey of
duration �(log n) (determined by the interval of the first front of t , and in particular by
2c1 log n + 2dc2). Via probabilistic analysis it can be proved that, with probability at least
1 − 1/n3, the final front of s consists of �(

√
n) nodes and that the same holds for the front

of t . Moreover, it can be proved that again with probability at least 1 − 1/n3 the desired
edge for the final front of s to the final front of t exists, and thus we can conclude that there
is a probability of at least 1 − 3/n3 of getting from s to t by a journey arriving at most
by time �(log n). Finally, it suffices to observe that the probability that there exists a pair
of nodes s, t ∈ V for which the algorithm fails is less than n2(3/n3) = 3/n, thus, with
probability at least (1 − 3/n), the temporal diameter is O(log n), as required.

10. CONCLUSION AND OPEN PROBLEMS

A wide range of existing and emerging communication and computing systems are
characterized by an inherent degree of dynamicity. Traditionally, this degree was low, e.g.,
as the result of system failures, such as a crash of a process in a distributed system, and
therefore, it was naturally treated as an exception. Only recently have researchers started
to no longer consider the dynamicity of a system as a rare event but as the law. This has
been driven by the need to model systems (and problems for them) in which dynamicity is
always present and usually at a very high rate. Graphs have been proved an invaluable tool
for representing and enabling the formal treatment of any possible discrete set of objects
and relations between them. However, if these relations, or even the objects themselves,
change constantly, then systems of this type can be naturally modeled by a sequence of
graphs, each of them capturing the “state” of the system at a given time. Even though we
are still resorting to a graph as our basic representation tool, we now have an ordered (in
time) sequence of graphs and, furthermore, all noninstantaneous events or properties of
the system (such as communication between two nodes, reachability, paths, etc.) can no
longer be defined on a single graph but on a whole subsequence of graphs; in other words,
they have to respect the evolution of the system in time. This simple fact has two important

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 275

consequences. The first is that many of the existing methods and techniques for graphs
(including fundamental theorems and algorithms) cannot be directly applied and others
become totally inadequate, even when trying to solve an appropriately adapted version of a
standard graph problem. Typically, the problem becomes much harder to solve and in many
cases becomes totally different from the original problem, requiring radically different
approaches. The second, and most important, is that such a time-sequence of graphs is a
new mathematical entity, called a temporal graph, which generalizes graphs and is a rich
source of new problems with an inherent temporal nature that could not have shown up
without clearly representing the evolution of the graph in a distinct time dimension.

Though it is still quite early to anticipate the full range of potential applications, there
is already strong evidence that there is room for the development of a rich theory. As is
always the case, the groundwork will be laid by our ability to identify and formulate radically
new problems and not just by studying adjusted versions of existing graph-problems. Real
dynamic systems, such as the mobile Internet, transportation networks, social networks, ad
hoc sensor networks, and mobile robotic systems, to name a few, is the natural place to look
for such problems. Still, the existing literature has already identified some first challenging
research directions and technical problems whose further investigation has the potential
to push forward the area of temporal graphs. In this article, we gave a brief overview of
these developments. The following paragraph summarizes some interesting (according to
the author’s personal perspective) open problems. For more details and open problems the
interested reader is encouraged to consult the referenced papers.

First, is there a general rule underlying the complexity increase of a graph problem
when that problem is extended in time? Of course, this depends on how we reformulate
the problem. Then, can the different possible reformulations be partitioned into classes
each with its own effect on complexity? Moreover, many natural applications require an
algorithm to operate on a temporal graph without knowing or being able to accurately
predict the future instances of the graph. This is, for example, the case in a system of
interacting mobile entities where each single entity cannot tell how the other entities will
behave in future steps. It might be the case that the right treatment of such settings is via
online algorithms and analysis, however, little effort has been devoted to this. There is
also, already, a large set of more specific and more technical questions, of which we will
give only some indicative examples; many more can be found in the referenced papers. We
saw that the max-flow min-cut theorem still holds in temporal graphs and that there is a
natural reformulation of Menger’s theorem. It would be very valuable to check the validity
of many other fundamental results of graph theory. For example, is there some analogue
of Kuratowski’s planarity theorem (according to which a graph is planar iff it does not
contain a subdivision of K5 or K3,3) for temporal graphs? A possible temporal analogue
of planarity here could be the following: A temporal graph is time-planar if there is a way
to draw it so that no two intersecting edges share a time-label. Given such a definition, we
can also ask “What is the minimum number of time-labels guaranteeing time-planarity of a
non-planar graph?” (Coloring methods might help in attacking this and similar problems.)
Another interesting problem comes from extremal graph theory. It is well-known, due to
a beautiful theorem of Mantel from 1907, that every graph of order n and size greater
than �n2/4� contains a triangle. An interesting observation for temporal graphs is that any
triangle assigned different time-labels is a time-triangle. Thus, if we insist on different
time-labels, the appearance of two adjacent edges excludes the appearance of some third
edge if one wants to keep the temporal graph time-triangle free. Contrarily, if one picks
some matching, then those edges can appear any possible number of times and at any

276 MICHAIL

possible order. These indicate that if one wants to keep a temporal graph time-triangle free,
then he/she should sacrifice either dynamicity or connectivity (similar things hold in the
more general requirement of keeping the graph time-acyclic). This trade-off needs a precise
characterization. Moreover, in the temporal-graph design problem (discussed in Section 6)
there is great room for approximation algorithms (or even randomized algorithms) for
all combinations of optimization parameters and connectivity constraints, or even exact
polynomial-time algorithms for specific graph families. Also, though it has turned out to
be a generic lower-bounding technique related to the existence of a large edge-kernel in
the underlying graph G, we still do not know whether there are other structural properties
of the underlying graph that could cause a growth of the temporality (i.e., the absence of
a large edge-kernel does not necessarily imply small temporality). Another thing that we
do not know is whether a (3/2)-factor is within reach either for the general TTSP(1,2) or
for the special case with lifetime restricted to n. What we are looking for here is a new
direct approximation algorithm, some better reduction, or the harder way of improving
the known approximations for Maximum Independent Set in k-claw-free graphs or for
Set Packing. It would also be interesting to know how the generic metric TSP problem
behaves in temporal graphs. Is there some temporal analogue of triangle inequality (even a
different assumption) that would make the problem approximable? Is there some temporal
analogue of symmetry (e.g., periodicity) that does not trivialize the temporal dimension of
the problem? Consider also another model in which the lifetime is n and every edge that
changes “state” (e.g., cost/availability) remains in the same “state” for at least k steps. For
example, k = 1 allows for a fully dynamic temporal graph while k = n gives a static graph.
So, k in some sense expresses the degree of dynamicity of the graph. We expect, here, to
have interesting trade-offs between k and the approximation factors obtained for temporal
problems. There is also a wide-open road for investigation toward (temporal) properties
of random temporal graphs. Are some of the most natural temporal properties, such as
temporal diameter and temporal connectivity, characterized by a thresholding behavior, as
is the case with the phase transition in the Erdös–Renyi random graph model? We should
finally note that distributed computation in dynamic networks is a very active and steadily
growing sub-area of Distributed Computing, with its own already-identified nontrivial
questions and goals.

FUNDING

Supported in part by the project “Foundations of Dynamic Distributed Computing
Systems” (FOCUS) which is implemented under the “ARISTEIA” Action of the Opera-
tional Programme “Education and Lifelong Learning” and is co-funded by the European
Union (European Social Fund) and Greek National Resources.

REFERENCES

[1] E. Aaron, D. Krizanc, and E. Meyerson. “DMVP: Foremost Waypoint Coverage of Time-
Varying Graphs.” In Graph-Theoretic Concepts in Computer Science, pp. 29–41. Cham:
Springer International Publishing, 2014.

[2] E. C. Akrida, L. Gasieniec, G. B. Mertzios, and P. G. Spirakis. “Ephemeral Networks with
Random Availability of Links: Diameter and Connectivity.” In Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 267–276. New York,
NY: ACM, 2014.

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 277

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. “Computation in Networks
of Passively Mobile Finite-State Sensors.” Distributed Computing 18:4 (2006), 235–253.

[4] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi. “An O(log n/ log log n)-
Approximation Algorithm for the Asymmetric Traveling Salesman Problem.” In Proceedings of
the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 379–389. SIAM,
2010.

[5] J. Augustine, G. Pandurangan, P. Robinson, and E. Upfal. “Towards Robust and Efficient
Computation in Dynamic Peer-to-Peer Networks.” In Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 551–569. SIAM, 2012.

[6] C. Avin, M. Koucký, and Z. Lotker. “How to Explore a Fast-Changing World (Cover Time
of a Simple Random Walk on Evolving Graphs).” In Proceedings of the 35th International
Colloquium on Automata, Languages and Programming (ICALP), Part I, pp. 121–132. Berlin,
Heidelberg: Springer, 2008.

[7] E. Bach and J. Shallit. Algorithmic Number Theory Efficient Algorithms, Vol. 1. Cambridge,
MA: MIT Press, 1996.

[8] B. Baker and R. Shostak. “Gossips and Telephones.” Discrete Mathematics 2:3 (1972),
191–193.

[9] K. A. Berman. “Vulnerability of Scheduled Networks and a Generalization of Menger’s Theo-
rem.” Networks 28:3 (1996), 125–134.

[10] S. Bhadra and A. Ferreira. “Complexity of Connected Components in Evolving Graphs and
the Computation of Multicast Trees in Dynamic Networks.” In Ad-Hoc, Mobile, and Wireless
Networks, edited by S. Pierre, M. Barbeau, and E. Kranakis, pp. 259–270, Lecture Notes in
Computer Science, 2865. Berlin, Heidelberg: Springer, 2003.

[11] M. Bläser. “A 3/4-Approximation Algorithm for Maximum ATSP with Weights Zero and
One.” In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pp. 61–71. Berlin, Heidelberg: Springer, 2004.

[12] B. Bollobás. Modern Graph Theory. Graduate Texts in Mathematics. New York, NY: Springer,
Corrected edition, 1998.

[13] B. Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics, Second edition.
Cambridge, UK: Cambridge University Press, 2001.

[14] H. Broersma and X. Li. “Spanning Trees with Many or Few Colors in Edge-Colored Graphs.”
Discussiones Mathematicae Graph Theory 17:2 (1997), 259–269.

[15] H. Broersma, X. Li, G. Woeginger, and S. Zhang. “Paths and Cycles in Colored Graphs.”
Australasian Journal on Combinatorics 31 (2005), 299–311.

[16] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. “Time-Varying Graphs and
Dynamic Networks.” International Journal of Parallel, Emergent and Distributed Systems 27:5
(2012), 387–408.

[17] A. E. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. “Flooding Time in Edge-
Markovian Dynamic Graphs.” In Proceedings of the 27th ACM Symposium on Principles of
Distributed Computing (PODC), pp. 213–222. New York, NY: ACM, 2008.

[18] A. E. Clementi, F. Pasquale, A. Monti, and R. Silvestri. “Communication in Dynamic Radio
Networks.” In Proceedings of the 26th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pp. 205–214. New York, NY: ACM, 2007.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second
Edition. Cambridge, MA: The MIT Press and McGraw-Hill Book Company, 2001.

[20] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and
D. Terry. “Epidemic Algorithms for Replicated Database Maintenance.” In Proceedings of the
6th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 1–12. New
York, NY: ACM, 1987.

[21] C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun, and E. Viola. “On the Complexity of In-
formation Spreading in Dynamic Networks.” In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 717–736. SIAM, 2013.

278 MICHAIL

[22] J. Edmonds. “Paths, Trees, and Flowers.” Canadian Journal of Mathematics 17:3 (1965), 449–
467.

[23] T. Erlebach, M. Hoffmann, and F. Kammer. “On Temporal Graph Exploration.” In 42nd In-
ternational Colloquium on Automata, Languages and Programming (ICALP), pp. 444–455.
Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 2015.

[24] A. Ferreira. “Building a Reference Combinatorial Model for Manets.” Network, IEEE 18:5
(2004), 24–29.

[25] L. Fleischer and É. Tardos. “Efficient Continuous-Time Dynamic Network Flow Algorithms.”
Operations Research Letters 23:3 (1998), 71–80.

[26] P. Flocchini, B. Mans, and N. Santoro. “On the Exploration of Time-Varying Networks.”
Theoretical Computer Science 469 (2013), 53–68.

[27] S. O. Gharan, A. Saberi, and M. Singh. “A Randomized Rounding Approach to the Traveling
Salesman Problem.” In Proceedings of the IEEE 52nd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 550–559. Washington, DC: IEEE Computer Society, 2011.

[28] B. Haeupler and F. Kuhn. “Lower Bounds on Information Dissemination in Dynamic Networks.”
In Proceedings of the 26th International Symposium on Distributed Computing (DISC), pp.
166–180, Lecture Notes in Computer Science, 7611. Berlin, Heidelberg: Springer, 2012.

[29] M. M. Halldórsson. “Approximating Discrete Collections via Local Improvements.” In Proceed-
ings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 160–169.
SIAM, 1995.

[30] F. Harary and G. Gupta. “Dynamic Graph Models.” Mathematical and Computer Modelling
25:7 (1997), 79–87.

[31] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. “A Survey of Gossiping and Broad-
casting in Communication Networks.” Networks 18:4 (1988), 319–349.

[32] P. Holme. “Modern Temporal Network Theory: A Colloquium.” The European Physical Journal
B, 88:9 (2015), 1–30.

[33] P. Holme and J. Saramäki. “Temporal Networks.” Physics Reports 519:3 (2012), 97–125.
[34] D. Ilcinkas and A. M. Wade. “On the Power of Waiting when Exploring Public Transportation

Systems.” In 15th International Conference on Principles of Distributed Systems (OPODIS),
pp. 451–464. Berlin, Heidelberg: Springer, 2011.

[35] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. “Randomized Rumor Spreading.” In
Proceedings of the IEEE 41st Annual Symposium on Foundations of Computer Science (FOCS),
pp. 565–574. IEEE, 2000.

[36] M. Karpinski and R. Schmied. “On Improved Inapproximability Results for the Shortest Super-
string and Related Problems.” Proc. 19th CATS, pp. 27–36. Darlinghurst, Australia: Australian
Computer Society, Inc., 2013.

[37] D. Kempe and J. Kleinberg. “Protocols and Impossibility Results for Gossip-Based Communi-
cation Mechanisms.” In Proceedings of the IEEE 43rd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 471–480. IEEE, 2002.

[38] D. Kempe, J. Kleinberg, and A. Kumar. “Connectivity and Inference Problems for Temporal
Networks.” In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 504–513. New York, NY: ACM, 2000.

[39] S. Kontogiannis and C. Zaroliagis. “Distance Oracles for Time-Dependent Networks.” In 41st
International Colloquium on Automata, Languages and Programming (ICALP), pp. 713–725.
Berlin, Heidelberg: Springer, 2014.

[40] V. Kostakos. “Temporal Graphs.” Physica A: Statistical Mechanics and its Applications 388: 6
(2009), 1007–1023.

[41] S. O. Krumke and H.-C. Wirth. “On the Minimum Label Spanning Tree Problem.” Information
Processing Letters 66:2 (1998), 81–85.

[42] F. Kuhn, N. Lynch, and R. Oshman. “Distributed Computation in Dynamic Networks.” In
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pp. 513–522, New
York, NY: ACM, 2010.

TEMPORAL GRAPHS: AN ALGORITHMIC PERSPECTIVE 279

[43] F. Kuhn and R. Oshman. “Dynamic Networks: Models and Algorithms.” SIGACT News, 42
(2011), 82–96.

[44] F. Kuhn, R. Oshman, and Y. Moses. “Coordinated Consensus in Dynamic Networks.” In Pro-
ceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), pp. 1–10. New York, NY: ACM, 2011.

[45] F. T. Leighton. Introduction to Parallel Algorithms and Architectures, Vol. 188. San Francisco,
CA: Morgan Kaufmann, 1992.

[46] C. Liu and J. Wu. “Scalable Routing in Cyclic Mobile Networks.” Parallel and Distributed
Systems, IEEE Transactions on, 20:9 (2009), 1325–1338.

[47] B. Mans and L. Mathieson. “On the Treewidth of Dynamic Graphs.” In Computing and Combi-
natorics, edited by D.-Z. Du and G. Zhang, pp. 349–360. Lecture Notes in Computer Science,
pp. 349–360. Berlin, Heidelberg: Springer, 2013.

[48] K. Menger. “Zur Allgemeinen Kurventheorie.” Fundamenta Mathematicae, 10:1 (1927), 96–
115.

[49] G. B. Mertzios, O. Michail, I. Chatzigiannakis, and P. G. Spirakis. “Temporal Network Opti-
mization Subject to Connectivity Constraints.” In 40th International Colloquium on Automata,
Languages and Programming (ICALP), pp. 657–668. Lecture Notes in Computer Science 7966.
Berlin, Heidelberg: Springer, 2013.

[50] G. B. Mertzios, O. Michail, and P. G. Spirakis. “Temporal Network Optimization Subject to
Connectivity Constraints.” CoRR, abs/1502.04382, 2015. Full version of [MMCS13].

[51] S. Micali and V. V. Vazirani. “An O(
√|V | · |E|) Algorithm for Finding Maximum Matching

in General Graphs.” In Proceedings of the IEEE 21st Annual Symposium on Foundations of
Computer Science (FOCS), pp. 17–27. IEEE, 1980.

[52] O. Michail. “An Introduction to Temporal Graphs: An Algorithmic Perspective.” In Algorithms,
Probability, Networks, and Games - Scientific Papers and Essays Dedicated to Paul G. Spirakis
on the Occasion of His 60th Birthday, pp. 308–343. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2015.

[53] O. Michail. “Terminating Distributed Construction of Shapes and Patterns in a Fair Solution of
Automata.” In Proceedings of the 34th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 37–46. New York, NY: ACM, 2015.

[54] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. “Mediated Population Protocols.” Theoretical
Computer Science 412:22 (2011), 2434–2450.

[55] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. New Models for Population Protocols, edited
by N. A. Lynch, Synthesis Lectures on Distributed Computing Theory. San Rafael: Morgan &
Claypool, 2011.

[56] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. “Naming and Counting in Anonymous
Unknown Dynamic Networks.” In 15th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), pp. 281–295. Cham: Springer International Publishing,
2013.

[57] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. “Causality, Influence, and Computation in
Possibly Disconnected Synchronous Dynamic Networks.” Journal of Parallel and Distributed
Computing, 74:1 (2014), 2016–2026.

[58] O. Michail and P. G. Spirakis. Unpublished work on random temporal graphs, 2012.
[59] O. Michail and P. G. Spirakis. “Simple and Efficient Local Codes for Distributed Stable Net-

work Construction.” In Proceedings of the 33rd ACM Symposium on Principles of Distributed
Computing (PODC), pp. 76–85. New York, NY: ACM, 2014. Also in Distributed Computing,
doi: 10.1007/s00446-015-0257-4, 2015.

[60] O. Michail and P. G. Spirakis. “Traveling Salesman Problems in Temporal Graphs.” In 39th
International Symposium on Mathematical Foundations of Computer Science (MFCS), pp.
553–564. Berlin, Heidelberg: Springer, 2014. Also in Theoretical Computer Science, doi:
10.1016/j.tcs.2016.04.006, 2016.

280 MICHAIL

[61] M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method, Vol. 23. Berlin,
Heidelberg: Springer, 2002.

[62] J. Monnot. “The Labeled Perfect Matching in Bipartite Graphs.” Information Processing Letters
96:3 (2005), 81–88.

[63] R. O’Dell and R. Wattenhofer. “Information Dissemination in Highly Dynamic Graphs.” In
Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing (DIALM-POMC),
pp. 104–110. New York, NY: ACM, 2005.

[64] J. B. Orlin. “The Complexity of Dynamic Languages and Dynamic Optimization Problems.”
In Proceedings of the 13th Annual ACM Symposium on Theory of Computing (STOC), pp.
218–227. New York, NY: ACM, 1981.

[65] J. B. Orlin. “Some Problems on Dynamic/Periodic Graphs.” In Progress in Combinatorial
Optimization, editor by W. R. Pulleybank, pp. 273–293. Toronto: Academic Press Canada,
1984.

[66] C. H. Papadimitriou and M. Yannakakis. “The Traveling Salesman Problem with Distances One
and Two.” Mathematics of Operations Research 18:1 (1993), 1–11, 1993.

[67] D. Peleg. “Distributed Computing: A Locality-Sensitive Approach.” In SIAM Monographs on
Discrete Mathematics and Applications 5, SIAM, 2000.

[68] B. Pittel. “On Spreading a Rumor.” SIAM Journal on Applied Mathematics 47:1 (1987), 213–
223.

[69] R. Ravi. “Rapid Rumor Ramification: Approximating the Minimum Broadcast Time.” In Pro-
ceedings of the IEEE 35th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 202–213. IEEE, 1994.

[70] C. Scheideler. “Models and Techniques for Communication in Dynamic Networks.” In Pro-
ceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 27–49, 2002.

[71] A. Soifer. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of
its Creators, first edition. New York, NY: Springer-Verlag, 2009.

[72] S. L. Tanimoto, A. Itai, and M. Rodeh. “Some Matching Problems for Bipartite Graphs.” Journal
of the ACM (JACM) 25:4 (1978), 517–525.

[73] B. Xuan, A. Ferreira, and A. Jarry. “Computing Shortest, Fastest, and Foremost Journeys in
Dynamic Networks.” International Journal of Foundations of Computer Science 14:2 (2003),
267–285.

