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Abstract We examine the problem of creating random realizations of very large degree se-
quences. Although fast in practice, the Markov chain Monte Carlo (MCMC) method for se-
lecting a realization has limited usefulness for creating large graphs because of memory
constraints. Instead, we focus on sequential importance sampling (SIS) schemes for random
graph creation. A difficulty with SIS schemes is assuring that they terminate in a reasonable
amount of time. We introduce a new sampling method by which we guarantee termination while
achieving speed comparable to the MCMC method.

1. INTRODUCTION

Creating random graphs with a given degree sequence is useful for tasks from counting
graphs with a given degree sequence to creating models of networks. Unfortunately, the
problem of creating a uniformly sampled random graph for a given degree sequence, using
a reasonable amount of time and space, is an open and difficult problem.

To formalize the problem, we use some basic terminology. An degree sequence α =
(α1, α2, ..., αn) is a set of nonnegative integers such that n − 1 ≥ α1 ≥ α2 ≥ ... ≥ αn ≥ 0.
For any simple, undirected graph G = (V,E), where V is a set of vertices and E is a set of
edges, with node degrees α, G is termed a realization of α. We use the standard notation
of n and m to represent number of nodes and edges, respectively. If a degree sequence α

has at least one realization, then the sequence is graphic.
Using this notation, the basic problem is to select a near-uniform random realization

of a graphic degree sequence α. Additionally, we are concerned with issues such as speed
and memory usage, which affect the creation of very large graphs. This article describes a
new approach to this problem.

For the remainder of this article, we first review previous work to this problem and
why there is a need for a new approach. Following that section, we give needed background
results and definitions. The next four sections introduce the algorithm and provide analysis
of its runtime and the quality of its results. Finally, we will offer some conclusions and
suggest future directions of investigation.
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2. PREVIOUS WORK

The most common method for creating a random realization of a degree sequence is
the Monte Carlo Markov chain (MCMC) approach. In this approach, an initial (nonrandom)
realization is created and then a series of random edge switches are chosen, creating a walk
among different realizations of the same degree distribution [11, 18]. This approach is
popular because of its ease of implementation and its speed.

The major disadvantage of this approach is that it requires access to all edges in the
graph in order to perform the random walk. This limits the size of the graph that can be
generated using this method. If the size of the graph is too large to fit within the memory of
the computer, there is a significant access penalty incurred for each random edge selection.

Additionally, understanding the mixing time of the Markov chain is an open problem;
it is unknown whether the random walk on a general degree distribution is rapid mixing.
Significant progress was made [6] by showing that, for regular sequences, the MCMC
approach is rapid mixing, but the bound they give is

τ (ε) ≤ α17
maxn

7 log
(
αnε−1

)
,

where αmax is the maximum value in the degree sequence α. More recently, [10] showed
that if, for the maximum degree in a sequence, αmax,

3 ≤ αmax ≤
√∑n

i=1 αi

4
, (2.1)

then the resulting Markov chain is rapid mixing, but the resultant bound is an order of n

larger than the bound for the regular case. Unfortunately, both bounds are much too large
for practical use.

There is empirical evidence that the actual mixing times are much lower, perhaps as
low as O(m) time [8]. With the time needed to created a Havel–Hakimi instance in order to
start the random walk, a typical MCMC implementation uses O(m log n) time and O(m)
space to generate a random realization.

Another approach to generating random realizations is by using a sequential impor-
tance sampling (SIS) method to randomly select edges until a realization is built. This
allows selected edges to be saved at each step and, thus, requires only that the degree
sequence, not the entire graph, fits into memory.

The difficulty with an SIS approach is that while we are selecting edges to add to our
random realization, it is possible to become “stuck.” In other words, we cannot arbitrarily
choose edges and guarantee that a graph exists that has the given degree sequence and the
chosen edges.

The first algorithm to overcome this problem of creating an SIS algorithm that could
guarantee termination is from [4]. Unfortunately, the Blitzstein–Diaconis algorithm (BD)
has two drawbacks. The first is that the method has not been shown to sample uniformly. The
authors were able to show empirical evidence that their algorithm gave only a reasonable
sampling of the realizations. The second and more serious setback of this approach is that
the algorithm’s runtime of O(mn2) makes it much slower than the MCMC approach. This
runtime can be lowered to O(mn) time, but this is still significantly slower than the MCMC
algorithm [13].

A second SIS method was introduced, which we will denote as BKS [3]. The advan-
tage of their method stems from the result that if αmax ≤ O(m

1
4 −τ ), then their algorithm is
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expected to run in O(αmaxm) time and asymptotically approaches uniform sampling. This
is a powerful result but it requires a very strong constraint on the degree sequence.

In addition, unlike the BD algorithm, this algorithm does not have a termination
guarantee; it has only a high probability of succeeding for sequences that meet the maximum
degree-size bound. This lack of a termination guarantee becomes problematic when using
the BKS method for instantiating sequences that are outside of the prescribed limits. For
instance, from the set of threshold degree sequences [12], as the length of the sequences
grows, the probability that the BKS method is able to construct a realization of the sequences
quickly approaches zero.

Finding fast SIS methods is essential to being able to create very large random graphs.
In this article we introduce a new SIS algorithm that maintains the termination guarantee
of the BD algorithm while having a runtime that is competitive with the MCMC and BKS
methods.

3. DEFINITIONS AND BASIC RESULTS

We begin with some needed preliminary definitions and results. In order to compare
sequences, we will use majorization, which is a partial order over the set of degree se-
quences. The degree sequence α majorizes (or dominates) the degree sequence β, denoted
by α � β, if for all k from 1 to n,

k∑
i=1

αi ≥
k∑

i=1

βi, (3.1)

and if the sums of the two sequences are equal, i.e.,

n∑
i=1

αi =
n∑

i=1

βi. (3.2)

The sequence α strictly majorizes β, denoted by α � β, if αi �= βi for at least one i.
If α is a degree sequence and αi ≥ αj + 2, then the operation of subtracting 1

from αi and adding 1 to αj is called the unit transformation from i to j on α. The new
sequence created by this operation is denoted by α[i → j ]. To designate the application
to a degree sequence α of a series of unit transformations, we use the shorthand notation
α[i1 → j1][i2 → j2] = (α[i1 → j1]) [i2 → j2].

There is a close relationship between majorization and unit transformations, as shown
by the following theorem.

Theorem 3.1 ([14]) For any degree sequences α and β where α � β, β can be obtained
from α by a finite sequence of unit transformations.

The power of comparing degree sequences using majorization comes from the fol-
lowing theorem.

Theorem 3.2 ([17], Theorem 1) If the degree sequence α is graphic and α � β, then β is
graphic.
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We introduce an additional notation for showing modifications to a degree sequence.
For a degree sequence α, index i, and a set of indices ω, where i �∈ ω and |ω| = αi , a
reduction R(α; i, ω) is the integer sequence where we delete the term αi and subtract 1
from the terms in the index set ω and the resulting sequence is sorted into reverse order.
The set of all reductions from an index i on the sequence α we will denote as R(α, i).

In the set R(α, i) there exists a reduction Rmax(α; i) that majorizes all the other
reductions. This reduction is created by setting the index set ω to the αi largest indices,
where i �∈ ω. At the same time, there exists a reduction Rmin(α; i) that is majorized
by all the other reductions and is created by setting the index set ω to the αi smallest
indices, where i �∈ ω. An example is for the sequence α = (5, 5, 5, 5, 4, 4, 1, 1, 1, 1), then
Rmax(α; 1) = (5, 5, 5, 4, 3, 0, 0, 0, 0) and Rmin(α; 1) = (4, 4, 4, 3, 3, 1, 1, 1, 1). Performing
the reduction Rmin(α; i) to a degree sequence is commonly called a “laying-off" procedure
in the literature. We now restate a classic result in terms of reductions.

Theorem 3.3 ([11], Theorem 2.1) A degree sequence α is graphic if and only if for any
index i, Rmin(α; i) is graphic.

This result is a simple consequence of the theorem of [17]. If α is graphic, then
for a given index i, there must exist some reduction R(α; i, ω) that is also graphic. This
reduction comes from simply taking the adjacent vertices to vi in the realization of α. Since
R(α; i, ω) � Rmin(α; i), then Rmin(α; i) must also be graphic.

4. AN SIS APPROACH USING REDUCTIONS

Previously used SIS algorithms for creating random realizations involve choosing
individual edges at each step. This approach leads to either slow and complicated checks
to ensure that the resulting edge in the graph is viable, as in case of the BD algorithm, or
no guarantee of termination, as in the case of the BKS algorithm.

Rather than selecting individual edges, we instead choose all the potential edges to
a given node at once, i.e., choosing a random reduction to the given node. Determining
whether the selected edges are valid requires testing only if the resulting reduction is
graphic; if the reduction is graphic, then there is a realization that contains the resulting
edges in the reduction.

This leads to a direct SIS algorithm; for the sequence α and the index i, at each step,
we choose a random reduction R(α; i, ω). If the chosen reduction is nongraphic, we use it as
an upper bound for selecting a new reduction, R(α; i, ω′), such that R(α; i, ω′) ≺ R(α; i, ω).
If this new sequence is still not graphic, it becomes the new upper bound and we iterate.
From Theorem 3.3, this process will eventually find a graphic reduction, and thus, the
algorithm itself is guaranteed to terminate with a random realization. This algorithm is
shown in Figure 1.

The time needed for selecting a random reduction that respects these constraints
needs some explanation. First, let us consider the case when there is no previous upper
bound for the reduction R(α; i, ω). We note that if a degree sequence is sorted and we
guarantee that its sum is even, then we can test if the sequence is graphic in O(

√
m) time

[19]. Using a data structure such as a binary indexed tree [7], we can both sample from a
weighted distribution of the nodes and update the weighting after selection in O(log n) time
per operation. Thus, the total time to select a reduction set ω for the reduction R(α; i, ω)
using a given weighting of the nodes is O(αi log n). If, for each iteration, we reduce from
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Figure 1 Algorithm 1. SIS selection method based on random reductions.

an index i where i ≥ αi (such as choosing the index of the smallest value at each step),
then αi ≤ √

m and the total time needed to choose and test a random reduction becomes
O(

√
m · log n).
Now, consider that we have a previous upper bound S = R(α; i, ωS). In order to

choose a new reduction N = R(α; i, ωN ) where R(α; i, ωN ) ≺ S, using the described
method, first select a new reduction R(α; i, ωP ). Then define ωN as the αi smallest indices
in the set ωS ∪ ωP . As we will show in Section 7, this selection process corresponds to
the operation R(α; i, ωN ) = R(α; i, ωS) ∧ R(α; i, ωP ) � R(α; i, ωS). The only difficulty
with this approach is when R(α; i, ωP ) � R(α; i, ωS) and so R(α; i, ωN ) = R(α; i, ωS).
When this occurs, we choose the largest index i where i �∈ ωS such that there exists an
index j ∈ ωS where R(α; i, ωS)[i → j ] is a valid reduction. By setting R(α; i, ωN ) =
R(α; i, ωS)[i → j ] ≺ R(α; i, ωS), we guarantee that the algorithm will terminate with a
set time bound.

Combining all these parts, the overall runtime of Algorithm 1 is O(n log n·√m·g(α)),
where g(α) is the number of nongraphic reductions selected during the construction of the
realization. We now examine the value g(α).

5. SELECTING GRAPHIC REDUCTIONS

The runtime of Algorithm 1 depends on the expected value of the number of non-
graphic reductions selected, g(α), and this value g(α) strongly depends on the distribution
of the degree sequence. To discuss this dependency on the sequence distribution, we will
compare degree sequences by their majorization gap [2]. The majorization gap for a se-
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Figure 2 This figure displays the probabilities that a uniformly selected random reduction on the last index of a
sequence will be graphic across all graphic degree sequences of a given length and majorization gap. This figure
is a compilation of all graphic sequences of length 12 and less. The black outer border on the right-hand side of
the figure represents combinations of majorization gap and number of edges where no sequence exists.

quence α is the minimum number of unit transformations from some threshold sequence β

to α where β � α. This measures how close to being threshold a particular sequence is; the
closer a sequence is to being threshold [12], then the smaller the sequence’s majorization
gap is and the fewer the number of graphic reductions there are in a reduction set for
any given index. If the sequence α is a threshold sequence, i.e., has a majorization gap of
0, then there is exactly one reduction in the set R(α, i) that is graphic. However, as the
majorization gap becomes larger, the sequence is closer to being regular and the number of
possible graphic reductions grows. For any sequence sum, there is a majorization gap value
for which all degree sequences whose majorizations of all possible reductions are graphic.

Figure 2 shows the dependency of g(α) to its majorization gap. In this figure, we
show the probability that a given uniformly sampled reduction is graphic from all degree
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Figure 3 This figure shows the average number of nongraphic random reductions in which the x-axis of each
plot is the sequence length. Each point is an average of 30 different degree distributions with the same sequence
length and distribution parameters. Each graph shows the number of times a nongraphic reduction is selected
while creating the graph along with a linear least-squares fit, and error bars for one standard deviation of the
number of nongraphic reductions selected.

sequences with a fixed length and majorization gap. The first column, where the majorization
gap is 0, represents all the threshold graphs for a given length. This figures that the closer a
sequence’s majorization gap is to zero, the higher the probability that a random reduction
will not be graphic.

This dependency on the distribution is closely related to the probability distribution
used for selecting the reductions. This weighting function for the selection probabilities
is important for two reasons: the first is that having a uniform or near-uniform selection
probability requires the correct edge-selection probabilities. Although it is an open problem
to show that any weighting function produces uniform selection among the various real-
izations for a degree sequence, we use the weighting function described by Blitzstein and
Diaconis for their algorithm. For the degree sequence α and index p, the weight given to an
edge (p, q) to be selected for the realization G is proportional to the degree of q. Blitzstein
and Diaconis empirically observed that this weighting gives a more uniform sampling of
the realizations than simply using a uniform weighting of the nodes.

Because the BD weighting tends to create edges to vertices with larger degrees, the
majorization gap of the resulting reduction typically is larger than a reduction using uniform
selection. This tends to reduce the number of nongraphic reductions selected in the algo-
rithm. In Figure 3, we see the results of distribution and the sampling method on the number
of nongraphic reductions selected. For distributions that tend to have smaller majorization
gaps (in this case, power-law distributions compared to Poisson distributions), they will be
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Figure 4 This figure shows a lattice of reductions for the sequence (5, 5, 5, 5, 4, 4, 1, 1, 1, 1) on its first index.
The grey nodes signify nongraphic reductions, whereas the white nodes are graphic.

expected to have more nongraphic selections. Also, there are more nongraphic selections
for uniform edge sampling versus the weighting scheme of Blitzstein and Diaconis. It
should be noted that, for these test cases, there were a very small number of nongraphic
reductions chosen. In fact, other than the case that used a power-law distribution along with
uniform weighting combination, the algorithm averaged ≤ 1 nongraphic reduction selected
out of the ≈ 2000 selections. For those cases, the algorithm essentially behaved as if it has
a O(n log n · √m) runtime.

Because the maximum number of reductions the algorithm chooses before coming
to the minimum reduction is polynomial in n [9], then from a uniform sampling from the
reductions majorized by a given reduction, we would expect to find a graphic reduction in
no more than g(α) = O(log n) trial reductions. Thus, an expected time for this algorithm
of O(n log2 n · √m) within a logarithmic factor of the time for MCMC when the sequence
is dense is (m = O(n2)), and is at worst a O(

√
n log n) factor slower for sparse sequences

(m = O(n)).
The worst-case bound for g(α) is much larger than its expected bound. From a result

we will prove in Section 7, the number of nongraphic reductions that the algorithm can
potentially choose before encountering a graphic reduction is g(α) = �(n2). We will now
consider how to use the order structure of the reduction set to limit this worst-case behavior
of the algorithm.

As we will show in Section 7, the partial-order (R(α, i),�) is a lattice. Theorem 3.3
shows that the bottom element Rmin(α, i) in (R(α, i),�) will always be graphic if the
original sequence is graphic. Because all the graphic sequences are grouped at the bottom
of the lattice, we reduce the possibility of selecting a nongraphic reduction by pruning
some of the nongraphic reductions at the top of the lattice. If we descend the lattice starting
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from the maximum element, we will eventually find a graphic sequence that we can use to
provide a range for selecting reductions. But simply finding a maximal graphic reduction in
the reduction lattice is not enough to create a selection range within which every realization
has a nonzero probability of being selected. Consider the sequence with its corresponding
reduction lattice in Figure 4. If we look at the set of graphic reductions, we notice that there
are two maximal graphic reductions: (5, 5, 4, 3, 3, 1, 1, 0, 0) and (5, 4, 4, 4, 4, 1, 0, 0, 0). If
we were to use one of those reductions as an upper bound for the set of reductions from
which we are choosing, then the other reduction would have a zero probability of occurring
in a realization.

In order to navigate the lattice to find an upper bound that does not preclude any
graphic realizations, we use the following procedure. Start with the maximum reduction
r = Rmax(α, d) and test if it is graphic. If it is not, then choose the smallest and largest
indices in r , i, and j , respectively, where neither i nor j has been previously used in this
search procedure, and create the new sequence r[i → j ]. It is straightforward to see that
the sequence r[i → j ] remains a reduction. We now retest whether this new reduction
is graphic and repeat the procedure; if the reduction is not graphic, then we continue by
choosing a new set of indices i, j that have not been used in this procedure. The maximum
number of times this procedure will repeat is at most αd , because after αd iterations r

becomes Rmin(α, d), which is graphic.
The point of this construction is that each time we choose the indices in this manner,

the resulting reduction is majorized by all other valid reductions created by some unit
transformation. Thus, for the nongraphic reduction r , where r[i → j ] is graphic, any
maximal graphic reduction p will be r[i → j ] � p ≺ r .

We now formalize this idea with a simple algorithm. As shown in Algorithm 2 in
Figure 5, the basic idea is that before any random reduction is selected for an index d, we
call the procedure to give bounds for the selection range of the reductions. For the reduction
R(α, d), the maximum number of iterations in the algorithm is αd . With an appropriate
data structure, each unit transformation can be implemented in constant time, giving the
algorithm a total runtime of O(αd ).

6. QUALITY OF RANDOM GRAPHS

Determining the quality, or how close to uniform, the random graphs produced by
the reduction algorithm are remains an open question. Although we cannot prove that the
sampling approaches uniform, we can empirically compare the graphs produced by the
different algorithms. Figure 6 shows a comparison of the four algorithms: Algorithm 1,
MCMC, BD, and BKS.

These algorithms were compared by creating a series of graph degree sequences
drawn from Poisson and power-law distributions, where a single random sequence for
both distributions was created for each length from 100 to 2,000 incremented by 100. The
exact distributions are a Poisson distribution coming from a Erdős–Renyi random graph
with an edge probability of p = 0.1 and a power-law distribution with an exponent of
k = 2.0. For each sequence, 30 random graphs were created by each algorithm. For the
MCMC algorithm, we took the running time as 30 · m switches, as suggested in [16].
We compared three graph properties, again chosen from [16], to examine the similarity
of the random graphs: the global clustering coefficient, the maximum eigenvalue, and the
diameter.
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Figure 5 Algorithm 2. SIS algorithm for creating a random model using the reduction bounds method. The
reduction bounds routine returns two values, βN which is a minimal nongraphic reduction such that there exists a
graphic reduction that is a unit transformation of βN and βG, which is a graphic reduction where βG = βN [i → j ]
for some indices i and j .

We make two comments about our experimental setup. The first is that for the power-
law distribution, the BKS algorithm could not converge to a random graph, thus, there are
no results for BKS shown for those distributions. A second point is that a number of the
random graphs produced for the power-law distributions by the other three methods were
not connected and, thus, had an infinite diameter. Therefore, we do not show the diameter
results for this case.
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Examining the results, we note that all four algorithms produced virtually identical
results for the Poisson distributions. At the scale shown in the figure, the average behavior
between the four algorithms was indistinguishable.

For the power-law distributions, we note two points. First, the reduction and BD
algorithms give essentially identical results. This can be expected, because the reduction
algorithm is using the BD weighting for selecting its reductions. Thus, the quality of the
results given by Algorithm 1 is essentially the same as that of the BD algorithm. A second
point is that for the power-law case, we see the only noticeable difference between the
results of the algorithms. There is a slight but discernible separation between the MCMC
results and Algorithm 1 and BK results.

7. BOUNDING THE CHAIN LENGTHS

Over the set of partitions Lp for some positive integer p, majorization forms the
lattice (Lp,�) [5], where the meet and join operators are defined as follows:

(α ∧ β)k = min

{
k∑

i=1

αi,

k∑
i=1

βi

}
−

k−1∑
i=1

(α ∧ β)i

= min

{
k∑

i=1

αi,

k∑
i=1

βi

}
− min

{
k−1∑
i=1

αi,

k−1∑
i=1

βi

}
, (7.1)

α ∨ β =
∧

{φ : φ � α, φ � β} . (7.2)

If the integer p is even, then there are a small number of elements at the bottom of the
partition lattice that are graphic, although the majority of the partitions in the lattice are
nongraphic [15]. This integer partition lattice has provided a framework for considering
realizability and uniqueness problems of degree sequences [1].

In this section, we use the lattice structure inherent in the set of reductions to establish
bounds on the two algorithms. To show this, we will use the terminology and main result
found in [9]. An H -step is a unit transform [i → i + 1], whereas a V -step is a unit
transform [i → j ] where αi = αj + 2. An HV -chain between the sequences α and β is
a series of transformations α = α(0) � α(1) � α(2) � · · · � α(i) � · · · � α(L) = β, where
every unit transformation from 1 to i is an H -step and every unit transformation from i to
L is a V -step.

In an integer partition lattice, the length of the longest chain between two sequences,
α and β where α � β, is defined as h(α, β). That HV -chains form the longest chains
between sequences in these lattices was shown in [9].

Theorem 7.1. [9],Theorem 12 Suppose that α � β. Then, all HV -chains from α to β

have the same length and this length is h(α, β).

The degree set D(α) of a sequence α is the set of values in the sequence, i.e.,
D(α) = {d|d = αi for 1 ≤ i ≤ n}. We denote the subsequence of α from the index i

to the index j as α(i : j ). We now relate the degree set between the indices in a unit
transformation to the length of the longest chain between the two sequences.
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Figure 6 The x-axis shows the length for the random sequences. The Poisson degree distributions come from
an Erdős–Renyi model where p = 0.1 and the power-law degree come from a power-law distribution with an
exponent of 2.0. The points represent the mean of 30 random graphs generated by each algorithm, and the error
bars represent one standard deviation. For the Poisson distributions, only the largest of error bars is shown because
of the overlap.

Theorem 7.2. For the positive integer sequence α and 1 ≤ i < j ≤ n, then

|D(α(i : j ))| − 1 ≤ h(α, α[i → j ]) ≤ |D(α(i : j ))|. (7.3)

Proof. Theorem 7.1 shows that we need to construct an HV -chain only from α to
α[i → j ] to establish the length of the maximum chain. To create an HV -chain, we
will induct on the indices from i to j . To begin, we choose the smallest index p > i such
that αi ≥ αp + 2. For the index p, there are three possibilities for maximum chain length
h(α, α[i → p]).
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1. If αi = αp + 2, then [i → p] defines a HV -chain of length 2 ≤ |D(α(i : p))|.
2. If αi > αp + 2 and αi = αp−1, then [p − 1 → p] defines an HV -chain of length

2 = |D(α(i : p))|.
3. If αi > αp + 2 and αi = αp−1 + 1, then [p − 1 → p][i → p − 1] defines an

HV -chain of length 3 = |D(α(i : p))|.
We will now induct on the index number to show that this relationship continues

to hold. Assume that for all indices p ≤ r ≤ k there there is an HV -chain from α to
α[i → r] whose length is |D(α(i : r))| − 1 ≤ h(α, α[i → r]) ≤ |D(α(i : r))|. If
αk+1 = αk , then α[i → k] = α[i → k + 1], and so they have the same HV -chain.
Else, if αk > αk+1, then there are two cases. If αk ≥ αk+1 + 2, then α[i → k + 1] =
α[k → k + 1][i → k]. By prepending the H -step [k → k + 1] to the front of the
HV -chain for [i → k], we then have an HV -chain from α to α[i → k + 1] whose
length is ≤ |D(α(1 : k + 1))|. If αk = αk+1 + 1, then there exists a smallest index s such
that αs = αk . Now, α[i → k + 1] = α[i → s][s → k + 1]. Again, by appending the
V -step [s → k + 1] to the end of the HV -chain for α[i → s], we have a new HV -chain
that satisfies the condition.

This result bounds the number of possible nongraphic sequences that can be ran-
domly selected before choosing a graphic sequence. The maximum number of nongraphic
sequences in the SIS Algorithm 2 is no greater than the maximum chain length from α to
α[i → j ], i.e., h(α, α[i → j ]) ≤ j − i + 1 ≤ n.

If we take the set of the possible reductions for some index i in the sequence α,
they form a subset of the integer partitions. The majorization operation also forms a lattice
over the set of reductions, (R(α, i),�), where the meet and join definitions are identical
from the integer partition lattice. We see this by showing that the meet operator (and by
extension, the join operator) are closed for the set of reductions.

Theorem 7.3. For the sequence γ and the sequences α, β ∈ R(γ, d), then α ∧ β ∈
R(γ, d).

Proof. From the definition of a reduction, 0 ≤ γi − αi ≤ 1 and 0 ≤ γi − βi ≤ 1 for
all i �= d. It follows that for all i, that |αi − βi | ≤ 1. For the sequence α ∧ β to not be
a reduction requires that there is an index p where γp − (α ∧ β)p ≥ 2. From (7.1), if∑p

i=1(α ∧ β)i = ∑p

i=1 αi and
∑p−1

i=1 (α ∧ β)i = ∑p−1
i=1 αi , then (α ∧ β)p = αp, and so

γp − (α ∧ β)p ≤ 1. There is an identical argument for when both sums are equal to the β

sums. For a contradiction, we assume that
∑p

i=1 αi >
∑p

i=1 βi and
∑p−1

i=1 αi <
∑p−1

i=1 βi .
But these inequalities imply that αp −βp ≥ 2, which contradicts the fact that this difference
can be no larger than 1. Thus, α ∧ β ∈ R(γ, d).

To establish a worst-case time bound for Algorithm 1, we show that there exist
reduction lattices that contain quadratic-length chains of nongraphic reductions.

Theorem 7.4. There exist reduction lattices of length n sequences that contain chains of
nongraphic reductions of length �(n2).

Proof. Consider the degree sequence taken from the graph that is constructed by starting
from the empty graph and then for m times adding an isolated node followed by a dominating
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node. From the construction of this graph, it is straightforward to see that this sequence is
both threshold ([12], Theorem 1.2.4) and that its degree set contains all the integers from 1
to n − 1. Thus, this degree sequence with its length of n = 2m is

α = (n − 1, n − 2, ..., m + 1,m,m,m − 1, ..., 2, 1) . (7.4)

Since α is threshold, then Rmin(α,m) must be the only graphic sequence in R(α,m).
We construct Rmin(α,m) from Rmax(α,m) with the following series of unit transformations:

Rmin(α,m) = Rmax(α,m)[m − 1 → n][m − 2 → n − 1]...[1 → m + 1]. (7.5)

From Theorem 7.1, for each of these unit transformations, there is an HV -chain of length of
≥ m in the integer partition lattice. The point of this construction is that for each sequence
in the HV -chain of a unit transformation, it is also a valid reduction. Thus, between each
unit transformation there is a sequence of m reductions, and for the m unit transformations
there exists a chain of reductions whose length is at least m2 = 
(n2) between Rmax(α,m)
and Rmin(α,m).

8. CONCLUSIONS

We have examined the problem of sequentially creating a random realization of a very
large degree sequence and, in particular, in a reasonable amount of time. Current published
algorithms all have failings that reduce their usefulness. The MCMC approach requires
holding an entire graph in memory, the BKS algorithm does not guarantee termination and,
for some degree sequences, has a high probability of not succeeding, and the BD algorithm
is significantly slower than the other two approaches. The algorithm proposed in this article
overcomes all of these difficulties.

This algorithm is competitive with the time requirement for the MCMC approach,
but with a significant savings in memory usage. The quality of the selected realizations
produced matches the output of the Blitzstein-Diaconis method. With this approach, it is
feasible to create realizations containing millions of nodes.

Further research for problems in this area starts with the problem of determining
whether a better sampling scheme than the BD weighting exists for the edge selection.
Another important task is to prove the expected runtime of this algorithm, and in particular,
the expectation of choosing a nongraphic reduction.
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265:1–3 (2003), 417–420. doi: 10.1016/S0012-365X(02)00886-5.


