
Internet Mathematics, 11:403–420, 2015
Copyright © Taylor & Francis Group, LLC
ISSN: 1542-7951 print/1944-9488 online
DOI: 10.1080/15427951.2014.982311

A FASTER ALGORITHM TO UPDATE BETWEENNESS
CENTRALITY AFTER NODE ALTERATION

Rishi Ranjan Singh,1 Keshav Goel,2 S. R. S. Iyengar,1

and Sukrit Gupta3

1Department of Computer Science and Engineering, Indian Institute of Technology,
Ropar, Punjab, India
2Department of Computer Engineering, National Institute of Technology,
Kurukshetra, India
3Department of Computer Science and Engineering, PEC University of Technology,
Chandigarh, India

Abstract Betweenness centrality is widely used as a centrality measure, with applications
across several disciplines. It is a measure that quantifies the importance of a vertex based on the
vertex’s occurrence on shortest paths in a graph. This is a global measure, and in order to find
the betweenness centrality of a node, one is supposed to have complete information about the
graph. Most of the algorithms that are used to find betweenness centrality assume the constancy
of the graph and are not efficient for dynamic networks. We propose a technique to update
betweenness centrality of a graph when nodes are added or deleted. Observed experimentally,
for real graphs, our algorithm speeds up the calculation of betweenness centrality from 7 to
412 times in comparison to the currently best-known techniques.

1. INTRODUCTION

Network centrality measures are used to quantify the intuitive notion of nodes’ importance in
a network. There are several application-centric definitions of network centrality measures,
the popular ones being degree centrality, closeness centrality, eigenvector centrality, and
betweenness centrality. For background and description of centrality measures, one can
refer to [30, 18, 5].

There are a number of centrality indices based on the shortest path lengths: closeness
centrality [33], graph centrality [14]; and the number of shortest paths: stress centrality
[36], betweenness centrality [10, 1] in a graph. Each centrality measure signifies a particu-
lar characteristic that a node exhibits. Closeness centrality of a vertex indicates the distance
of a vertex from other vertices. Graph centrality denotes the difference between closeness
centrality of the vertex under consideration and the vertex with the highest closeness cen-
trality. Stress centrality simply denotes the total number of shortest paths passing through
a vertex.

The idea of betweenness centrality was proposed in [1, 10]. Betweenness centrality
of a node v is defined as BC(v) =∑

s �=t �=vεV
σst (v)
σst

, where σst is the total number of shortest

Addresss corrrespondence to Sudarshan Iyengar, Department of Computer Science and Engineering, Indian
Institute of Technology, Ropar, Nangal Road, Rupnagar Punjab, India – 140001. E-mail: sudarshan@iitrpr.ac.in

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uinm.

403

404 GOEL ET AL.

paths from vertex s to vertex t , and σst (v) is the total number of shortest paths from vertex
s to vertex t passing through vertex v.

Betweenness centrality insinuates a more global characteristic, unlike the degree
centrality, which takes into consideration the number of links originating from a node
(also called the degree of a node), which is clearly a local characteristic. Betweenness
centrality has found many important applications across different disciplines. It has been
used in the identification of sensitive nodes in biological networks [28]. Betweenness
scores an play important role in public transit system networks [34, 8], gas pipeline net-
works [7], and waste-water disposal system networks [24]. In protein-protein interaction
(PPI) networks, essential proteins can be identified by their high betweenness centrality
[19]. This characteristic of proteins can be used to select suitable drug targets [41] for
various ailments including cancer [16], tuberculosis [35], zoonotic cutaneous leishmani-
asis [9], etc. Recently, Nagata et al. [27] proposed a new load-balancing approach that
reduces the blocking probability of request in wavelength-division multiplexing (WDM)
networks. In their algorithm, they used betweenness centrality of nodes for adjusting the link
costs.

Betweenness centrality is also used to identify nodes that are crucial for informa-
tion flow in a brain network [17], where different regions of the brain represent nodes
in the network and white matter represents the links. With recent advances in Electrical
& Electronic Systems (EES systems such as Electronic Control Units used in vehicles)
the mechanism of fault isolation and fault detection is of great importance. In [25], it
was observed that the betweenness centrality score of a node is a good basis for rank-
ing the fault tolerance monitoring points and that it outperforms the degree centrality
measure.

Similarly, in supply chain networks [40] it is reported that for a lower level of tolerance
(load carrying capacity), more harm is created in the case when a node with high load is
deleted from a network opposed to when a node with high degree is deleted.

[3] An algorithm to calculate betweenness centrality that reduced the time complex-
ity from O(|V |3) to O(|V ||E|) for unweighted graphs was suggested in [3]. Since was
suggested in .the real-world networks tend to be large and transient, such algorithms are
observedly impractical if one requires computing the betweenness centrality of nodes in
a dynamic network. In [40], experiments were performed to report that the betweenness
ranking order of vertices before and after being updated in a graph can be significantly
different. Most of the real-world networks are dynamic in nature, which calls for designing
an algorithm that can update the betweenness centrality of nodes faster than the algorithms
designed for static networks. There are several algorithms proposed in [23, 12, 20] to find
betweenness centrality for updating edges in a graph. Most of the currently available litera-
ture considers only the case of updating edges, i.e., these algorithms assume that alteration
of a node from a graph is equivalent to modifying one or more edges incident on that node.
We propose an algorithm that is deg(v)-times faster than the afore mentioned algorithms
in the case of a deletion/addition of a node v.

1.1. Motivation

It is sometimes necessary to calculate betweenness centrality for a network at every stage
of transition. With a large network and the current algorithms in use, recalculation becomes
difficult. Some examples of such networks follow.

A FASTER ALGORITHM TO UPDATE BETWEENNESS CENTRALITY 405

Complex communication networks are continuously growing and evolving. Each
node in a communication network has a maximum capacity for carrying load,1 after which
the node shuts down and its load is distributed among the remaining nodes. Because of
increased load, other nodes might shut down and the network might become disconnected.
This phenomenon is commonly known as cascading failure. Betweenness centrality of a
node corresponds to its load. In scenarios where a node failure is taking place, we need to
rapidly calculate load of a node and compare it to its load-carrying capacity to determine
whether this node will be able to sustain the extra load that was added to it due to the failure
of the previous node. This helps us determine whether a cascading failure will take place.
This has applications not only in communication networks but in transport networks and in
EES networks, too.

It has been found through experiments conducted [28] that breakdown of nodes with
higher betweenness centrality causes greater harm. In such networks, we can compute a
sequence of nodes as follows: We start with the given network. At each step, we delete the
node with the highest betweenness centrality, add that node to the sequence and then repeat
this process until the network becomes disconnected. This sequence can be used to decide
the order in which security should be provided to the nodes in the network and to ensure that
if a node in the present network fails, the node with the highest betweenness centrality in the
resulting network has enough security and resources. This requires repetitive calculation
of betweenness centrality which when done with the conventional algorithm [3], will
be highly inefficient. Similarly, points that have excess load in power grid systems and
computer networks can be provided with more resources; stations with excess traffic in
public transit systems can be provided with more measures to redistribute traffic, and sewer
lines with higher betweenness centrality can be provided with more frequent maintenance
to prevent blockades. This exercise can also be done after the failure of some random node
in a graph, and appropriate actions on the nodes in the network may be taken thereafter.

Two sequential failure strategies, random and usage based, are being used [25]
for fault mitigation analysis. In usage-based failure strategy, it is assumed that usage is
proportional to its betweenness centrality. Thus, the node with the highest betweenness
centrality score is most likely to fail in case of usage-based failure strategy. After every
failure, we need to calculate which node has the highest betweenness centrality and check
if we have reached a preset completion criterion (maybe a threshold value, after which
the network is so fragmented that it is not usable, or a percentage of nodes) and if it
does, we can check the number of failures that were required to reach there from the first
failure. The node with the minimum number of failures required should be monitored more
rigorously. This recursive calculation of betweenness centrality is useful in fault mitigation
analysis.

In social networking websites such as Twitter and Facebook, betweenness centrality
of a node denotes the number of heterogeneous groups of nodes that the node under
consideration links [37]. Since these nodes are involved in passing information between
heterogeneous groups of nodes, they are more important than a node with just a higher
degree.2 Also, we may want to determine the next important actor in case the current social

1The amount of information flowing through a node in a communication network is called
its load.

2In the study [15] conducted on the uprising in Egypt, where the social networking site Twitter
played an important role in the formation of public opinion against Mr. Hosni Mubarak (the then
President of Egypt), it was found that these nodes played an important role in shaping public opinion.

406 GOEL ET AL.

network is altered. Such networks are highly dynamic due to the continuous addition and
removal of actors.

In section 2, we present some basic definitions and concepts used in this article.
Section 3 contains the algorithm with explanation. Implementation details and results are
presented in Section 4. For synthetic graphs, we tested our algorithm by generating Erdös
Rényi graphs with different probabilities. We took both cases of node addition and node
deletion into consideration and achieved speedups ranging from 1.14 to 255. It is important
to mention that the speedups achieved for synthetic graphs here are graph dependent and
can be further varied by changing various elements while constructing synthetic graphs.
We also considered various real-world graphs in our experiments and observed average
speedups ranging from 7 to 412. We discuss related works in Section 5.

2. DEFINITIONS AND PRELIMINARIES

In this section, we define some terms that have been used throughout the article. We
also explain the basic concepts which provide basis for developing the algorithm in
Section 3.

We use following terms interchangeably throughout the article; node or vertex and
graph or network. A (simple) path in a graph is a sequence of edges connecting a sequence
of vertices without any repetition of vertices. Thus, a path between two vertices vi and vj

(called terminal vertices) can be denoted as a sequence of vertices, {vi, ..., vj } such that
vi �= vj and no vertices in the sequence are repeated. The length of a path is the sum of
the weights of edges in the path (edge weight is taken as one for unweighted graphs). A
shortest path between two vertices is the smallest length path between them. An end vertex
is a vertex with degree one. A graph is said to be connected if there exists a path between
each pair of vertices. An articulation vertex is a vertex whose deletion will leave the graph
disconnected. A biconnected graph is a connected graph having no articulation vertex. A
cycle in a graph is a path having the same terminal vertices. A set of cycles is called linearly
independent when each cycle contains atleast one edge that doesn’t belong to any other
cycle. A cycle basis of a graph is defined as a maximal set of linearly independent cycles.
Weight of a cycle basis is the sum of the lengths of all cycles in the cycle basis. A cycle
basis of minimum total weight is called the minimum cycle basis(MCB).

Repetitive merging (taking union) of all the elements of the MCB that have at least
one vertex in common, gives us a set called the Minimum Union Cycle set (MUCset). Each
element of an MUCset is termed as the Minimum Union Cycle (MUC). Due to the way an
MUCset is formed, two MUCs can not have any vertex in common. A connection vertex c
in an MUC (say, MUCi) is an articulation vertex such that it is adjacent to a vertex that
does not belong to MUCi . On removal of the connection vertex c, the graph will become
disconnected and the components that are disconnected from MUCi are together termed
as disconnected subgraph Gc. For a more detailed description of MCB and MUC, readers
are referred to [21]. Details about MUCs and their importance in updatingz of betweenness
centrality can be understood from [23].

2.1. Methodology and Observations

We first understand the case of vertex deletion in undirected unweighted connected graphs.
Then we derive similar observations for a vertex addition case. We have conducted ex-
periments and have shown results for both vertex addition and deletion. On the basis of

A FASTER ALGORITHM TO UPDATE BETWEENNESS CENTRALITY 407

Figure 1 Type 1: Vertex belongs to an MUC but is not an articulation vertex. Type 2: Vertex is an articulation
vertex. Type 3: Vertex does not belong to an MUC and is an end vertex.

the method used for updating of betweenness centrality after deletion of a vertex, we can
categorize the vertices of the graph into three groups as in Figure 1.

In this article, we explain the updating process after deletion of vertices of Type
1. Deletion of a vertex of Type 2 will leave the graph disconnected and the concept of
betweenness centrality will then be limited to only the component of the disconnected
graph. We do not explain this case in detail. On deletion of these types of nodes, a variation
of the approach given in this article for handling Type 1 node deletion can be used for
each disconnected graph to update the betweenness centrality. After deletion of vertices
of Type 3, we can use a procedure similar to Algorithm 2 to update the centrality scores.
Now, we define a few more terminologies and give lemmas. We establish a theorem that
provides a basis to develop our algorithm to update betweenness centrality after vertex
deletion.

Pair dependency of a pair of vertices (s, t) on a vertex v is defined as: δst (v) = σst (v)
σst

,
where σst is the number of shortest paths from vertex s to vertex t , and σst (v) is the number
of shortest paths from vertex s to vertex t passing through vertex v. Betweenness centrality
of a vertex v can be defined in terms of pair dependency as: BC(v) =∑

s �=v �=t∈V δst (v). Let
BFTr denote the breadth-first traversal (BFT) of the graph rooted on vertex r . Dependency
of a vertex s on a vertex v is defined as: δs•(v) = ∑

t∈V \{s,v}
δst (v) [3]. Let us define a set

P s(w) = {v : v ∈ V, w isasuccessor of v in BFTs}. In [3], the author proved that

δs•(v) =
∑

w:v∈P s (w)

σsv

σsw

(1+ δs•(w)). (2.1)

Let SP (vi, vj) be the set of all shortest paths from vertex vi to vj . Let MUCU be the
MUC where alteration has been made. Let Gi be the subgraph made of the components
that will be disconnected from MUCU after removal of connection vertex ci ∈ MUCU.
Let V (Gi) denote the set of vertices in subgraph Gi . Then, we can establish the following
lemmas and theorem.

Lemma 3.1. If v lies on all shortest paths between s and t , where s �= t �= v ∈ V , then
σst = σsv.σvt .

Lemma 3.2. For u ∈ V (Gk) and v ∈ MUCU , every element of SP (u, v) must contain ck .

Proof. Since ck (connection vertex) is the only vertex that links Gk with MUCU , every
path between vertices in Gk and MUCU must pass through ck .

408 GOEL ET AL.

Figure 2 After deletion of vertex V 9, the shortest paths starting and ending in G5 or G7 will not be affected.
Other shortest paths may be altered.

Lemma 3.3. Betweenness centrality of a vertex v can be changed only because of the
shortest paths that had the altered vertex as one of their terminal vertices where v ∈
V \MUCU .

Proof. Assume s, t ∈ V and s �= t �= v. Betweenness centrality of vertex v, BC(v), will
be influenced by following types of shortest paths:

1. Shortest paths that do not pass through the MUCU . They start and end outside MUCU ,
without passing through it. Naturally, when an alteration is made in a graph, these paths
remain unchanged. An example is shown in Figure 2.

2. Shortest paths that have one terminal vertex in one disconnected subgraph Gi and
the other in a disconnected subgraph Gj : These shortest paths may change. For one
such shortest path, suppose the terminal vertices s and t are in different disconnected
subgraphs, which pass through connection vertices c1 and c2, respectively (v lies in
the disconnected subgraph where s lies). According to Lemma 3.1 and Lemma 3.2,
δst (v) = σst (v)

σst
= σsc1 (v).σc1c2 .σc2 t

σsc1 .σc1c2 .σc2 t
= σsc1 (v)

σsc1
. We can observe that the shortest paths from s

to c1 remain the same after node deletion, and so this factor doesn’t change.
3. Shortest paths that have one terminal vertex in one disconnected subgraph Gi and the

other in MUCU : Out of these shortest paths, the paths where deleted vertex is not a
terminal vertex, we can get a relation similar to that obtained above. When the deleted
vertex is a terminal vertex (i.e., either s or t is deletion vertex), a factor of δst (v) = σst (v)

σst

should be deleted from the betweenness centrality score of vertex v. This is because
existing shortest paths from s to t are nonexistent now.

Thus, only one type of shortest paths (with altered vertex as one of the terminal
vertices) can change the betweenness centrality of the vertex v.

Theorem 3.4. Let vd be the vertex to be deleted. Let BC(v) be the betweenness centrality
of the vertex v and dependency of the vertex vd on the vertex v ∈ V \ MUCU is δvd•(v).
Then, the updated betweenness centrality of the vertex v after deletion of the vertex vd can
be calculated as:

BC ′(v) = BC(v)− 2δvd•(v)

A FASTER ALGORITHM TO UPDATE BETWEENNESS CENTRALITY 409

Figure 3 Addition of Type 4 vertex forms a new MUC (MUCU 2) or forms a large MUC (MUCU 1) by joining
several MUCs. Vertex of Type 5 is added as an end vertex.

Proof. By the definition of dependency, δvd•(v) gives the effect of all shortest paths starting
at vertex vd in the betweenness centrality of node v. According to Lemma 3.3, shortest
paths with vd as terminal vertex (start vertex or end vertex on the path) are affecting the
change in centrality only of vertices outside the MUCU . After deletion of vd , all such
shortest paths will be deleted. Because the graph is undirected, σvd t = σtvd

, so, we will
subtract the dependency δvd•(v) twice.

Now, we will describe the vertex addition case in brief. On the basis of the method
used to update the betweenness centrality after addition of a vertex, we can categorize the
vertices of the graph into two groups as in Figure 3. The process of updating the betweenness
centrality after addition of Type 4 vertices is very much similar to the updating process used
after deletion of Type 1 vertices. A slight modification in Theorem 3.4 gives a theorem for
vertex addition, as stated following.

Theorem 3.5. Let va be the vertex that has been added. Let BC(v) be the betweenness
centrality of the vertex v before the addition of vertex va . After addition, let the dependency
of the vertex va on the vertex v ∈ V \ MUCU be δva•(v). Then, the updated betweenness
centrality of the vertex v after addition of the vertex va can be calculated as:

BC ′(v) = BC(v)+ 2δva•(v)

The proof of Theorem 3.5 is similar to the proof of Theorem 3.4. In the next sec-
tion, we explain algorithms to update the betweenness centrality for the case in which a
vertex (Type 1) is being deleted. Algorithms for updating of betweenness centrality after
addition of vertices are similar to the algorithms in Section 4, with a slight modification
based on Theorem 3.5. The Updating process of the betweenness centrality scores after
addition of Type 5 vertices can use the Algorithm 2 with just a slight modification based on
Theorem 3.5.

3. OUR ALGORITHM

After deletion of a vertex that belonged to an MUC and was not an articulation vertex,
we will update the betweenness centrality in different ways for the two types of vertices:
vertices outside MUCU and vertices in MUCU . We use Theorem 3.4 to update between-
ness centrality for vertices outside MUCU , and the algorithm is explained in detail in

410 GOEL ET AL.

Section 3.2. When vertices in MUCU are considered, we observe that several shortest
paths that were passing through an altered vertex changed after deletion. So we recom-
pute betweenness centrality using the idea given in [23], which is explained in brief in
Section 3.3. We assume that the betweenness centrality score of all vertices is available
before proceeding with the preprocessing step of our algorithm.

3.1. Preprocessing Step

Every time a change is made in the graph, updating the MUCset becomes necessary. We can
do it in two ways, either by updating the MUCset (approach used in [23]) or by recalculation
of the MUCset. The approach for updatind the MUCset takes longer than recalculation.
Instead of updating the MUCset, we recalculate it using the output of Tarjan’s biconnected
components algorithm [38] (commonly known as Tarjan’s Algorithm). Tarjan’s biconnected
algorithm uses the depth-first traversal of a graph for calculating biconnected components.
The input to and output from Tarjan’s algorithm can be understood with the help of Figures
4(a) and 4(b). The process of recalculation of the MUCset is given in Algorithm 1. The time
complexity for calculating biconnected components is O(|V | + |E|) due to the bound on
depth-first search. Thus, the time complexity for recalculation of the MUCset (Algorithm
1) is O(|V | + |E|). Following, we explain the procedure for calculating the MUCset using
biconnected components.

Algorithm 1 Preprocessing step: Calculating MUCs in the Graph
1: Use Tarjan’s Algorithm to calculate a set of biconnected components, C.
2: for each Ci ∈ C do
3: if |Ci | = 2 then
4: Remove Ci from C.
5: end if
6: end for
7: while ∃ Ci, Cj ∈ C where Ci and Cj have at least one common vertex do
8: Remove Ci and Cj from C.
9: Insert Ci ∪ Cj in C.

10: end while
11: MUCset ← C

12: for each MUCj ∈ MUCset do
13: Find all the connection vertices and corresponding disconnected subgraphs.
14: end for

Every graph can be decomposed into a set of biconnected components, C, in which
the elements of C are denoted by Ci (using Tarjan’s algorithm). Let |Ci | denote the number
of vertices in the biconnected component Ci . Each biconnected component contains at least
one edge (two vertices) and may share vertices (articulation vertex) with other biconnected
components. We remove components that contain only one edge because a single edge
cannot form an MUC. Because the elements of an MUCset are disjoint, we take repetitive
union of the components that have at least one vertex in common. We form the MUCset
in this fashion. The MUCset generated by applying Algorithm 1 on the biconnected com-
ponents (Figure 4(b)), which are calculated after applying Tarjan’s algorithm on the graph
in Figure 4(a), are shown in Figure 4(c). After calculating the MUCset, for each MUC, we

A FASTER ALGORITHM TO UPDATE BETWEENNESS CENTRALITY 411

Figure 4 (a)Graph before applying Tarjan’s algorithm. (b) Output graph after applying Tarjan’s algorithm on the
graph given in 4(a). (c) MUCset achieved after applying Algorithm 1 on the graph given in 4(a).

412 GOEL ET AL.

calculate connection vertices and disconnected subgraph(s) associated with each connection
vertex.

3.2. Calculating Changes in Betweenness Centrality for Vertices Outside

MUCU

The Effect of the altered vertex on betweenness centrality of vertices outside MUCU can
be found by forming BFT for the vertex that was deleted. The BFT can be calculated with a
time complexity of O(|E|). We then calculate the dependency of each vertex with respect to
the deleted vertex, starting from the vertices in the bottom level and recursively calculating
the dependency for vertices in subsequent higher levels using (3.1). Then, we use Theorem
1 to update the centrality values. The complete procedure is shown in Algorithm 2. In the
case of vertex addition, we add the dependency to the betweenness centrality scores of each
vertex outside MUCU , as stated in Theorem 3.5.

Algorithm 2 Calculating BFT and updating the vertices outside MUCU accordingly
1: vd : Vertex to be deleted.
2: Input: BC[v] of each vertex of original graph (v ∈ V).
3: S ← Empty Stack
4: P [w]←Empty List, w ∈ V

5: σ [t]← 0, t ∈ V , σ [vd] = 1
6: d[t]←−1, t ∈ V , d[vd] = 0
7: Q← Empty Queue
8: Enqueue vd → Q

9: while Q not empty do
10: Dequeue v← Q

11: push v→ S

12: for each neighbur of v do
13: if d[w] < 0 then
14: enqueue w→ Q

15: d[w]← d[v] + 1
16: end if
17: if d[w] = d[v]+ 1 then
18: σ [w]← σ [w]+ σ [v]
19: append v→ P [w]
20: end if
21: end for
22: end while
23: δ[v]← 0, v ∈ V

24: while S not empty do
25: pop w← S

26: for v ∈ P [w] do
27: δ[v]← δ[v]+ σ [v]

σ [w] (1+ δ[w])
28: end for
29: end while
30: for v ∈ V \MUCU do
31: BC[v]← BC[v]− 2.δ[v]
32: end for

A FASTER ALGORITHM TO UPDATE BETWEENNESS CENTRALITY 413

3.3. Calculating Betweenness Centrality for Vertices in MUCU

This section briefly describes the idea suggested in [23] for recomputation of betweenness
centrality for vertices in MUCU . In the disconnected subgraph Gj , let V (Gj) denote the
vertex set and let |V (Gj)| denote the number of vertices. Let |SP (u, v)| denote the number
of shortest paths between vertex u and vertex v. Here, we will explain the basic steps of
the algorithm, in brief. For detailed concept and the algorithm, used please refer to the
QUBE algorithm [23]. Let betweenness centrality of vertex v, BC(v) for all v ∈MUCU be
initialized with 0. Let cj be a connection vertex of MUCU and Gj be the corresponding
disconnected subgraph.

Now we calculate the betweenness centrality of vertex v by calculating and adding
the effect of the following types of shortest paths (shown in Figure 5) on vertex v:

1. The shortest paths with both source and destination in MUCU (Figure 5(a)): For counting
the effect of these paths, we use the algorithm suggested by [3] for only the vertices
in MUCU and compute local betweenness centrality BCMUC

0 U (v) for all vertices v ∈
MUCU .

2. The shortest paths with either source or destination (but not both) in MUCU

(Figure 5(b)): Let < s, .., t > be a shortest path from s ∈ V (Gj) to t ∈ MUCU .

Figure 5 Types of the shortest paths considered for calculating betweenness centrality for vertices in MUCU .
(a) The shortest paths with both source and destination in MUCU ; (b) The shortest paths with either source
or destination (but not both) in MUCU ; (c) The shortest path between the nodes from two different subgraphs
connected to MUCU , i.e., the shortest paths with neither source nor destination in MUCU ; (d) The shortest path
between the nodes from two different components of a single subgraph connected to MUCU .

414 GOEL ET AL.

In this case, σst (v)
σst
= σcj t (v)

σcj t
. So, to calculate the total effect of such paths, for each

shortest path < cj , ..., t >, we add the following factor to BC(v):

BC
<cj ,...,t>

1 (v) =
⎧⎨
⎩
|V (Gj)|
|SP (cj , t)| , if v ∈< cj , ..., vt > \{vt }
0, otherwise.

3. The shortest paths with neither source nor destination in MUCU (Figures 5(c) and 5(d)):
Let < s, .., t > be a shortest path from s ∈ V (Gj) to t ∈ V (Gk) where j �= k. In this

case, σst (v)
σst
= σcj ck

(v)

σcj ck

. So, to calculate the total effect of such paths, for each shortest path

< cj , ..., ck >, we add the following factor to BC(v):

BC
<cj ,...,ck>

2 (v) =
⎧⎨
⎩
|V (Gj)||V (Gk)|
|SP (cj , ck)| , if v ∈< cj , ..., ck >

0, otherwise.

When either of the subgraphs is disconnected, an additional factor:

BCi
3(ci) =

⎧⎨
⎩
|V (Gi)|2 −

x∑
l=1

(|V (Gl
i)|2), if Gi is disconnected

0, otherwise.

is added to the betweenness centrality calculations (ci is a connection vertex), where
Gj

l is the lth component of Gi and x is the number of connected components in Gi .

So, we have the following formula to calculate the betweenness centrality score of a vertex
in MUCU :

BC(v) = BCMUCU

0 (v)+ 2
∑
Gj ,t

∑
x∈SP (cj ,t)

BCx
1(v)+

∑
Gj ,Gk(j �=k)

∑
y∈SP (cj ,ck)

BCy

2(v)

(+ BCi
3(ci) if v = ci).

Let m be the number of edges and let n be the number of nodes in the given connected,
undirected, unweighted graph with m > n. The time complexity of the proposed algorithm
is O(m) when the altered vertex is an end vertex (Type 3, Type 5). In this case, we just have
to run Algorithm 2. In the other case when the altered node is of Type 1 or Type 4, the time
complexity is O(m′n′ +m), where m′ is the number of edges and n′ is the number of nodes
in MUCU ; O(m′n′) is the complexity due to the recomputation of betweenness scores of the
nodes in MUCU by the traditional Brandes’ Algorithm. The additional m term in the com-
plexity is due to the Algorithm 2 for updating the centrality score of vertices outside MUCU .

4. IMPLEMENTATION AND RESULTS

We have implemented the algorithm for both addition and deletion of vertices. The algorithm
can work faster for updating betweenness centrality, because it forms a subset of vertices
of the graph, MUCU , for which recalculation of betweenness centrality is to be done.
For the rest of the vertices, Algorithm 2 updates the betweenness centrality in negligible

A FASTER ALGORITHM TO UPDATE BETWEENNESS CENTRALITY 415

time compared to the recalculation step. The recalculation procedure includes the local
Brandes algorithm. So, it is directly proportional to the number of vertices inside MUCU .
We have compared our results with the Brandes algorithm [3] because that is the best-
known algorithm, according to our knowledge, for calculation of betweenness centrality
after vertex updating. The experiments were performed on an Intel i5-2450M CPU with
2.5 GHz clock speed and 4 GB main memory.

We use a similar measure used by authors in [23] termed proportion to compare the
algorithms. Proportion can be calculated as:

(
Number of vertices in MUCU

Total number of vertices in the graph

)
.100

Proportion is a direct function of the number of vertices in MUCU and thus speedup
achieved by our algorithm is directly affected by the proportion. So, a smaller proportion
would mean that betweenness centrality for a lesser number of nodes will have to be re-
computed, and this should achieve greater speedup, which we achieved in our experimental
results. We considered the following strategy to compute the average proportion of a graph.
We start randomly deleting vertices from the graph untill either the graph becomes discon-
nected or k vertices are deleted. Then we take the average of proportion values for each
deletion. The average speedup is calculated in a similar way. We consider k = 500 for
real networks. In general, average speedup on a graph or average proportion of a graph
depends on the number of MUCs formed by biconnected components and the fraction of
the total number of vertices belonging to these MUCs. If a graph consists of most of the
MUCs having small numbers of vertices with respect to the total number of vertices in the
graph, the average proportion will be small, and thus, average speedup on that graph will be
large.

4.1. Results for Synthetic Graphs

For experiments related to synthetic graphs we generated random Erdös Rényi graphs with
1000, 2000, and 3000 nodes. We considered addition and deletion of nodes for different
proportions of x, for each x ∈ A, where A = {10; 20; 30; 40; 50; 60; 70; 80} in the case
of deletion and A = {10; 20; 30; 40; 50; 60; 70; 80; 90} for addition. For the experiments in
which we considered node deletion, we used a probability of 0.05 for all generated graphs,
and for experiments in which we considered node addition, we used a probability of 0.08
for graphs with 1000 and 2000 nodes and 0.07 for graphs with 3000 nodes.

We initially calculated the betweenness centrality of each vertex using the Brandes
algorithm. Then we ran the preprocessing step (modified Algorithm 1 on the basis of
Theorem 3.5 for node addition and Algorithm 2 for deletion) to calculate the MUCs,
connection vertices, and disconnected subgraphs for our graphs. For the case of node
deletion, 50 vertices were continuously removed from each x proportion graph of each
group and average update times were calculated for different proportions. In the case of
node addition, average updation times were calculated over 100 iterations, where, in each
iteration, a vertex was added randomly to each x proportion graph of each group.

The results are plotted with average update time (in ms) at the y-axis and the pro-
portion of the graphs at the x-axis for each group and are shown in Figure 6 for the vertex
deletion case and Figure 7 for the vertex addition case. We get different speedups for an
different proportion of graphs in each group. In the case of deletion, for synthetic graphs

416 GOEL ET AL.

Figure 6 Plots for comparison of ours and the result in on synthetic graphs with 1000, 2000, and 3000 vertices,
respectively, in the case of vertex deletion. (a) 1000 vertices; (b) 2000 vertices; (c) 3000 vertices.

Figure 7 Plots for comparison of ours and the result in on synthetic graphs with 1000, 2000, and 3000 vertices,
respectively, in the case of vertex addition. (a) 1000 vertices; (b) 2000 vertices; (c) 3000 vertices.

with 1000 nodes, we achieve a speedup of 13.26, 3.90, and 2.25 for graphs with proportion
20, 40, and 60, respectively; for synthetic graphs with 2000 nodes, we achieve a speedup of
14.27, 5.01, and 1.78 for graphs with proportion 20, 40, and 60, respectively; for synthetic
graphs with 3000 nodes, we achieve a speedup of 12.54, 5.02 and 2.02 for graphs with
proportion 20, 40, and 60, respectively as shown in Figure 6. In the case of addition, for
synthetic graphs with 1000 nodes, we achieve a speedup of 38.40, 6.89, and 2.62 for graph
with proportion 20, 40, and 60, respectively; for synthetic graphs with 2000 nodes, we
achieve a speedup of 54.36, 7.87, and 2.55 for graphs with proportion 20, 40, and 60,
respectively; for synthetic graphs with 3000 nodes, we achieve a speedup of 59.63, 8.11,
and 2.54 for graphs with proportion 20, 40, and 60, respectively, as shown in Figure 7.

4.2. Results for Real Graphs

We also tested our algorithm on real-world networks. We chose different types of real
datasets to depict the flexibility of our algorithm. We converted directed graphs into simple
undirected graphs without self-loops and parallel edges. We picked the networks men-
tioned Following and performed simulations on them in July 2013. Collaboration networks
generally depict the collaborations an author has made while writing research papers. In-
teraction networks are networks in which nodes are connected because of their features. An
ownership network suggests transfer of resources between two nodes. A trust network is a
network of individuals with kindred interests and connections. Citation networks depict are
a which author has cited which author in his/her research work. Web subgraphs collection
of webpages that match a certain query of a search engine. The yeast protein-protein
interaction network’s (YeastL and YeastS) were also taken as an input to perform

A FASTER ALGORITHM TO UPDATE BETWEENNESS CENTRALITY 417

Avg. Avg.
Name of Dataset Type |V| |E| Proportion Speed-up

YeastL Interaction 2361 6646 31.16 64.88
YeastS Interaction 2361 6646 28.05 72.76
Geom Collaboration 7343 11898 17.08 7.63
Erdos02 Collaboration 6927 11850 7.13 323.75
Edros972 Collaboration 5488 8972 9.49 411.835
ODLIS Dictionary data 2909 16377 67.68 18.52
Wiki-vote Trust 7115 100762 38.452 28.472
California Web Subgraphs 9664 15969 25.54 77.658
EPA Web Subgraphs 4772 8909 21.55 150.456
Lederberg Citation 8843 41532 58.86 45.159
SciMet Citation 3084 10399 62.42 17.55
US Power Grid Electronic Transport 4941 6594 38.03 35.42

Table I Simulation results for real-world datasets.

simulations.3 We picked Geom, Erdos02, Erdos972, California, EPA, Lederberg, SciMet
and US Power Grid networks.4 ODLIS network.5 weblink. We also extracted Wiki-vote net-
work.6 For the real networks mentioned, information about networks, average proportion,
and average speed-ups over the Brandes algorithm are summarized in Table I.

5. RELATED WORK

The idea of betweenness centrality was first introduced in articles by [1, 10]. In article
[31], another measure, which considered random walks on any arbitrary length rather than
just shortest paths between two vertices, was defined. In [4], other types of betweenness
centrality such as, edge betweenness and group betweenness and algorithms to compute
them efficiently were considered. Betweenness centrality was earlier calculated by find-
ing the number and length of shortest paths between two vertices and then adding pair
dependencies for all pairs. An algorithm was suggested in [3], which introduces a re-
cursive way to sum the dependencies in graphs. Although the algorithm proposed in [3]
was faster than that used previously, it was still too costly for large graphs. Recently,
[32] gave an approach that could reduce the betweennesss computation based on some
special structures in graphs such as several small biconnected components and several
isomorphic nodes (nodes with the same neighburhood). Several approximation algorithms
were proposed [2, 6, 11, 26]. Real-world networks tend to be large and transient. Work
has been done in [23, 12] to find betweenness centrality after updating in a graph. The
algorithm suggested in [23] selects a subset of vertices whose betweenness centrality is
updated. However, it works only in the case of edge removal and addition. The algorithm

3The data for YeastL and Yeast S is available at http://vlado.fmf.unilj.si/pub/networks/data/
bio/Yeast/ Yeast.htm website

4http://www.cise.ufl.edu/research/sparse/matrices/Pajek/
5http://vlado.fmf.uni-lj.si/pub/networks/data/dic/odlis/Odlis.htm
6http://snap.stanford.edu/data/wiki-Vote.html

418 GOEL ET AL.

suggested in [12] takes into consideration different instances that might arise due to edge
addition in a graph and speeds up the algorithm in these cases. This algorithm works only
for streaming graphs, i.e., only in the case of edge additions. Recently, in an article [29],
an incremental algorithm for updating edges using Single Source Shortest Path Directed
Acyclic Graphs for each vertex was used recursively to update vertices. They have reported
the time complexity for updating to O(m′n + n2), where m′ is the maximum number of
edges that can lie on a shortest path. Another incremental algorithm was given in [20],
which extends the incremental algorithm for finding the all pairs shortest path problem. Re-
cently, several other algorithms [39, 13, 22] have been proposed that speedup the updating
process of betweenness centrality and [39]. algorithms for updating closeness centrality .
Those algorithms work in two steps: convergence and aggregation. In the convergence step,
the authors calculate the difference in the number of shortest paths or the difference in the
length’s of shortest paths before and after updating. Then, they aggregate the changes in the
existing centrality scores to get the updated centrality in the aggregation step. In another
study [22], an online algorithm is given that can keep the betweennesss of nodes and edges
up to date. [13] A distributed approach for updating the betweenness score in the distributed
online social networks is given.

6. CONCLUSION

In this article, we formulated an algorithm that efficiently calculates betweenness centrality
when vertices in a graph are updated. We did not consider the traditional way of updating
betweenness centrality after node alteration, which considers a node alteration event as
a series of edge alteration event’s. We achieved the speedups by calculating two sets of
vertices; one for which we need to update betweenness scores and the other for which we
need to recompute the betweenness score. We achieve an average speedup of 6.13 for a
proportion of 40 for considered synthetic graphs compared to the Brandes algorithm [3].
For real graphs, we get an average speedup of around 133 for a proportion of 29. The
speedup will increase further when proportion decreases.

REFERENCES

[1] J. M. Anthonisse “The Rush in a Directed Graph.” Stichting Mathematisch Centrum. Mathe-
matische Besliskunde BN 9/71(1971):1–10.

[2] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. “Approximating Betweenness Centrality.” In
Proceedings of the 5th International Conference on Algorithms and Models for the Web-Graph,
WAW’07, pp. 124–137. Berlin, Heidelberg: Springer-Verlag, 2007.

[3] U. Brandes. “A Faster Algorithm for Betweenness Centrality.” The Journal of Mathematical
Sociology 25:2 (2001),163–177.

[4] U. Brandes. “On Variants of Shortest-Path Betweenness Centrality and Their Generic Compu-
tation.” Social Networks 30:2 (2008),136–145.

[5] U. Brandes and T. Erlebach (Editors). Network Analysis: Methodological Foundations, LNCS
3418. Berlin, Heidelberg: Springer, 2005.

[6] U. Brandes and C. Pich. “Centrality Estimation in Large Networks.” International Journal of
Bifurcation and Chaos 17:07 (2007), 2303–2318.

[7] R. Carvalho, L. Buzna, F. Bono, E. Gutiérrez, W. Just, and D. Arrowsmith. “Robustness of
Trans-European Gas Networks.” Physical review E 80:1 (2009), 016106.

[8] S. Derrible. “Network Centrality of Metro Systems.” PloS One 7:7 (2012), e40575.

A FASTER ALGORITHM TO UPDATE BETWEENNESS CENTRALITY 419

[9] A. Flrez, D. Park, J. Bhak, B.-C. Kim, A. Kuchinsky, J. Morris, J. Espinosa, and C. Muskus.
“Protein Network Prediction and Topological Analysis in Leishmania Major as a Tool for Drug
Target Selection.” BMC Bioinformatics 11:1 (2010), 1–9.

[10] L. C. Freeman. “A Set of Measures of Centrality Based on Betweenness.” Sociometry 40:1
(1977), 35–41.

[11] R. Geisberger, P. Sanders, and D. Schultes. “Better Approximation of Betweenness Centrality.”
In Proceedings of 10th Workshop on ALENEX, pp. 90–100. SIAM, 2008.

[12] O. Green, R. McColl, and D. Bader. “A Fast Algorithm for Streaming Betweenness Central-
ity." In 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT), and
2012 International Conference on Social Computing (SocialCom), pp. 11–20. ASE/IEEE,
(2012).

[13] B. Guidi, M. Conti, A. Passarella, and L. Ricci. “Distributed Protocols for Ego Betweenness
Centrality Computation in DOSNs.” In 2014 IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops), pp. 539–544. IEEE,
2014.

[14] P. Hage, and F. Harary. “Eccentricity and Centrality in Networks.” Social Networks 17:1(1995),
57–63.

[15] A. Hanna. “Revolutionary Making and Self-Understanding: The Case of #Jan25 and Social
Media Activism.” Paper presented at meeting of the International Studies Association, San
Diego , CA, April 2012.

[16] Y. J. Huang, D. Hang, L. J. Lu, L. Tong, M. B. Gerstein, and G. T. Montelione. Targeting
the human cancer pathway protein interaction network by structural genomics. Molecular &
Cellular Proteomics 7:10 (2012), 2048–2060.

[17] Y. Iturria-Medina, R. C. Sotero, E. J. Canales-Rodrı́guez, Y. Alemán-Garcı́a, and L. Melie-
Gómez. “Studying the Human Brain Anatomical Network via Diffusion-Weighted MRI And
Graph Theory.” Neuroimage 40:3 (2008), 1064–1076.

[18] M. O. Jackson. Social and Economic Networks. Princeton, NJ, USA: Princeton University
Press, 2008.

[19] M. P. Joy, A. Brock, D. E. Ingber, and S. Huang. “High-Betweenness Proteins in the Yeast
Protein Interaction Network.” BioMed Research International 2005:2 (2005), 96–103.

[20] M. Kas, M. Wachs, K. M. Carley, and L. R. Carley. “Incremental Algorithm for Updating
Betweenness Centrality in Dynamically Growing Networks.” In Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,
ASONAM ’13, pp. 33–40. New York, NY, USA. ACM, 2005.

[21] T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. “A Faster Algorithm for Minimum Cycle
Basis of Graphs.” In Automata, Languages and Programming, edited by J. Daz, J. Karhumki,
A. Lepist, and D. Sannella, pp. 846–857, Lecture Notes in Computer Science 3142. Berlin,
Heidelberg: Springer, 2004.

[22] N. Kourtellis, G. D. F. Morales, and F. Bonchi. “Scalable Online Betweenness Centrality in
Evolving Graphs.” arXiv preprint arXiv:1401.6981, 2014.

[23] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung. “Qube: A Quick Algorithm for
Updating Betweenness Centrality.” In Proceedings of the 21st International Conference on
World Wide Web, WWW ’12, pp. 351–360. New York, NY, USA. ACM, 2012.

[24] J. Lienert, F. Schnetzer, and K. Ingold. “Stakeholder Analysis Combined with Social Network
Analysis Provides Fine-Grained Insights into Water Infrastructure Planning Processes.” Journal
of Environmental Management 125 (2013), 134–148.

[25] T.-C. Lu, Y. Zhang, D. L. Allen, and M. A. Salman. “Design for Fault Analysis Using
Multi-Partite, Multi-Attribute Betweenness Centrality Measures.” In Proceedings of the An-
nual Conference of the Prognostics and Health Management Society 2011, pp. 190–197. PHM,
2011.

[26] Y. Makarychev. “Simple Linear Time Approximation Algorithm for Betweenness.” Operations
Research Letters 40:6 (2012), 450–452.

420 GOEL ET AL.

[27] Y. Nagata, K. Asatani, and H. Otsuka. “A New Load-Balancing Method Applying Link-Cost
Adjustment Based on Betweenness Centrality in WDM Networks.” In Proc. of the 6th Interna-
tional Conference on Ubiquitous and Future Networks (ICUFN), pp. 59–60. IEEE, 2014.

[28] S. Narayanan. “The Betweenness Centrality of Biological Networks.” PhD thesis, Virginia
Polytechnic Institute and State University, 2005.

[29] M. Nasre, M. Pontecorvi, and V. Ramachandran. “Betweenness Centrality–Incremental and
Faster.” arXiv preprint arXiv:1311.2147, 2013.

[30] M. Newman. Networks: An Introduction. New York, NY, USA: Oxford University Press, 2010.
[31] M. J. Newman “A Measure Of Betweenness Centrality Based On Random Walks.” Social

Networks, 27:1 (2005), 39–54.
[32] R. Puzis, Y. Elovici, P. Zilberman, S. Dolev, and U. Brandes. “Topology Manipulations for

Speeding Betweenness Centrality Computation.” Journal of Complex NetWorks. Available
online (http://comnet.oxfordjournals.org/content/early/2014/04/29/comnet.cnu015.abstract),
2014.

[33] G. Sabidussi. “The Centrality Index of a Graph.” Psychometrika 31:4(1966), 581–603.
[34] J. Scheurer and C. Curtis. “Spatial Network Analysis of Multimodal Transport Systems: Devel-

oping a Strategic Planning Tool to Assess the Congruence of Movement and Urban Structure: a
Case Study of Perth Before and After the Perth-to-Mandurah Railway.” GAMUT, Australasian
Centre for the Governance and Management of Urban Transport, University of Melbourne,
2008.

[35] B. Shanmugham and A. Pan. “Identification and Characterization of Potential Therapeutic
Candidates in Emerging Human Pathogen Mycobacterium Abscessus: A Novel Hierarchical in
Silico Approach.” PloS One, 8:3 (2013), e59126.

[36] A. Shimbel. “Structural Parameters of Communication Networks.” The Bulletin of Mathematical
Biophysics 15:4 (1953), 501–507.

[37] T. Spiliotopoulos and I. Oakley. “Applications of Social Network Analysis for User Modeling.”
In Proceedings of the International Workshop on User Modeling from Social Media. New York,
NY, USA: ACM, 2012.

[38] R. Tarjan. “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on Computing,
1:2 (1972), 146–160.

[39] W. Wei and K. Carley. “Real Time Closeness and Betweenness Centrality Calculations
on Streaming Network Data.” Paper presented at the Proceedings of the 2014 ASE Big-
Data/SocialCom/Cybersecurity Conference, Stanford University, May 27–31, 2014.

[40] Y. Yan, L. Xiao, and Z. Xintian. “Analyzing and Identifying of Cascading Failure in Supply
Chain Networks.” In Proceedings of the 2010 International Conference on Logistics Systems
and Intelligent Management 3 (2010), pp.1292–1295.

[41] H. Yu, P. M. Kim, E. Sprecher, V.Trifonov, and M. Gerstein. “The Importance of Bottlenecks
in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics.” PLoS
Computational Biology 3:4 (2007), e59.

