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Dirichlet PageRank and Ranking
Algorithms Based on Trust
and Distrust
Fan Chung, Alexander Tsiatas, and Wensong Xu

Abstract. Motivated by numerous models of representing trust and distrust within a
network ranking system, we examine a quantitative vertex ranking with consideration
of the influence of a subset of nodes. We propose and analyze a general ranking metric,
called Dirichlet PageRank, which gives a ranking of vertices in a subset S of nodes
subject to some specified conditions on the vertex boundary of S. In addition to the
usual Dirichlet boundary condition (which disregards the influence of nodes outside
of S), we consider general boundary conditions allowing the presence of negative (dis-
trustful) nodes or edges. We give an efficient approximation algorithm for computing
Dirichlet PageRank vectors. Furthermore, we give several algorithms for solving var-
ious trust-based ranking problems using Dirichlet PageRank with general boundary
conditions.

1. Introduction

PageRank has proven to be a useful tool for vertex ranking in many contexts,
but some refinements are needed to address many increasingly complex but cru-
cial problems. For example, PageRank is susceptible to manipulation by link
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spammers, and it treats all links between nodes as positive votes for importance
even if some links are meant to show distrust.

To illustrate the need for incorporating several different types of “trust” and
“distrust,” we consider the following four examples:

Problem 1.1. Suppose a small community holds an election. A community can
be represented by a subgraph in a social network, and only edges incident to
nodes in the subgraph can be used to determine the ranking of the nodes. The
original interpretation of PageRank treats each edge as a vote for determining the
“importance” of the nodes. A local community’s election should not be influenced
by interests outside of the community; one way to deal with this is to declare the
influence of all outside nodes to be zero. This is the Dirichlet boundary condition
that we will discuss in this paper.

Problem 1.2. In the web graph, there are many nodes whose importance is not
properly reflected by the link structure of the graph. For example, the websites
of some governmental agencies are known to have high impact and authority,
but they may not be highly connected to other websites. With prior knowledge
of the network, it is often desirable to be able to effectively adjust the ranking
of exceptional webpages.

Problem 1.3. Another factor that many ranking models should address is the notion
of “distrust.” Distrust can appear in many different ways; for example, if several
vertices are known to be spammers, their neighbors are likely to be spammers as
well. It is desirable to be able to quantify distrust, and such quantification can
then be used for protection as well as for penalizing spammers. In some cases,
distrust between vertices can be built into the graph as negatively weighted edges,
presenting computational challenges that the usual PageRank definition does not
address. As we will see in later sections, we can use negative links to build a new
network with boundary conditions chosen to appropriately propagate distrust.

Problem 1.4. Another vertex-ranking problem arises from a distinction between
types of social networks. Some networks, such as Facebook, model close relation-
ships between people: a social friendship in which edges presumably form only
between people who know each other personally. This is in direct contrast to
systems such as Twitter and Google+, in which the act of “following” does not
necessarily indicate such a connection. Presumably, a person trusts his or her
friends but is interested in “following” not just friends but many others, including
celebrities, political figures, acquaintances, corporations, and even enemies.
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When agents participate in both networks, it is useful to be able to rank the
nodes of a larger network based on the smaller. A node v can compute a ranking
on the smaller, more closely knit, network and then use this to calculate a ranking
of nodes in the larger network that do not appear in the more personal network.
Current ranking mechanisms such as PageRank compute a global ranking and
therefore are not suitable for this situation.

In this paper, we will show how Dirichlet PageRank can be used to model
ranking problems, such as the above four, involving trust and distrust. We will
give an efficient algorithm to compute Dirichlet PageRank approximately, which
leads to efficient algorithms to solve these problems.

1.1. Related Work

The idea of ranking nodes in a graph has a rich history, beginning with the in-
troduction of PageRank in [Brin and Page 98]. The original PageRank definition
was designed for Web search, but many researchers have developed more tai-
lored ranking systems such as personalized PageRank [Haveliwala 04, Jeh and
Widom 03], which gives a ranking relative to some specified starting distribu-
tion �s.

One pitfall with PageRank as a ranking system is the fact that all edges
contribute positively. In practice, an edge such as a link from one Web page
to another can also represent a negative interaction or distrust between the
nodes. Several related mathematical models of propagating trust and distrust in
a network ranking system are given in [Guha et al. 04], and there are numerous
empirical results. Another algorithm [Gyöngyi et al. 04] relies on a small hand-
picked set of trusted nodes, but one must be careful not to allow malicious nodes
to be included.

There are many other algorithms derived from PageRank that use specific
heuristics to model trust or distrust in ranking schemes. For example, [Andersen
et al. 08] considers axioms that a ranking system should satisfy and develops
several ranking systems accordingly; [Borgs et al. 10] and [de Kerchove and
Dooren 08] systematically model distrust by modifying the PageRank equations
to consider negatively weighted edges; and [Kamvar et al. 03] gives an algorithm
with a similar flavor using random walks. Many of these algorithms are closely
related, but rigorous analysis is desired for capturing specific phenomena. We
will show that these related models can be represented by Dirichlet PageRank
with appropriate boundary conditions.

Another area of research concerns spam nodes when they are identified. It has
been shown that if agents can collude [Baeza-Yates et al. 05] or easily create
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pseudonyms [Cheng and Friedman 05], they can artificially boost their ranking
in PageRank and other ranking systems. There has been some work done on
how to effectively penalize these vertices [Benczur et al. 05], and our Dirichlet
PageRank can be efficiently used to achieve the same goal.

1.2. Results in This Paper

Motivated by the continual development of new PageRank-based algorithms and
the analysis of Dirichlet eigenvectors in [Chung and Yau 00], we develop and
analyze Dirichlet PageRank vectors as well as an efficient algorithm to compute
them. For a connected graph G, we give a Dirichlet PageRank equation and
show how to compute the unique solution with Dirichlet boundary conditions:
pr(v) = 0 for vertices v on the boundary of a specified vertex subset S.

After giving the algorithm for computing Dirichlet PageRank vectors, we gen-
eralize the boundary conditions to arbitrary values pr(v) = σ(v) for boundary
vertices v. We give an efficient algorithm, ApproxDirichPR, to compute approxi-
mate Dirichlet PageRank vectors with any boundary condition σ. We also give a
full analysis leading to the following theorem. We use the notation | · | to denote
the L1-norm, and for a subset S of vertices in G, the volume of S is denoted by
vol(S) =

∑
v∈S dv , where dv is the degree of v in the graph G. Detailed definitions

will be given in Section 2.

Theorem 1.5. For any ε ∈ (0, 1) and any teleportation constant α ∈ (0, 1), the algo-
rithm ApproxDirichPR outputs an ε-approximate Dirichlet PageRank vector p̃rS

in time O( vol(S ) log 1/ε
α ), which, compared to the exact Dirichlet PageRank prS ,

satisfies

|prS −p̃rS | <
ε vol(S)

α
.

We illustrate several applications of Dirichlet PageRank with boundary condi-
tions below. Many of the specific PageRank variations are covered by this general
framework, and we will show how its use can allow the efficient consideration of
several models in [Andersen et al. 08, Benczur et al. 05, Borgs et al. 10].

1.3. Several Applications of Dirichlet PageRank

1.3.1. Allowing negative edges in the graph. While trust between two vertices is denoted
by a positive weight, it is natural to quantify distrust as negative weights for the
associated edges. There are many other types of relations in a network that can
be represented with negative edges as well, and the usual PageRank vectors do
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not consider negative weights. We will use Dirichlet PageRank as a tool to deal
with graphs containing negative edges in Section 6.1.

1.3.2. Diminishing known spammers’ influence. Many Web pages can be identified as spam-
mers based on content or user reports. It is desirable to have a network-ranking
scheme that takes such considerations into account by penalizing both the known
spammer nodes and others with many links to them. We will show that Dirichlet
PageRank is useful for dealing with spammer nodes in Section 6.2.

1.3.3. Considering trusted friends’ opinions. A single node in a graph may have a set of
trusted friends or neighbors whose opinions need to be considered strongly in
designing a vertex-ranking scheme. If these trusted nodes have their own in-
dependent ranking opinions, we can use Dirichlet PageRank with appropriate
boundary conditions to compute a trust-based ranking. We will give an algo-
rithm, PRTrustedFriends, for this problem in Section 6.3.

1.3.4. Validating ranking for newly created nodes. Suppose that a new person enters a
social network but is unsure about which nodes are trustworthy. Personalized
PageRank is a useful tool for deriving quantitative information, but it raises the
question whether this ranking is susceptible to unknown spammers. Without a
specific set of trusted friends, it may seem hopeless for the newcomer, but Dirich-
let PageRank with boundary conditions can be used to validate and adjust its
ranking with a randomly selected pool of established nodes within the network.
We will give the details for an algorithm, PRValidation, in Section 6.3.

1.3.5. Reconciling ranking in personal and global social networks. Several interesting questions
arise in the analysis of different types of social networks. Some, like Facebook,
offer a more personal viewpoint, as reflected in the network structure, whereby
edges are formed only by mutual consent between two people who usually know
each other. This is in contrast to a network such as Twitter, whose connections
are often (though not always) impersonal. For example, people “follow” each
other based not only on friendship, but also on subject matter, celebrity appeal,
advertising, and many other reasons.

With the vast array of information available on a network such as Twitter,
it is important for a user to know who is trustworthy or worth following. This
is a difficult problem, but a user does have some information at hand, such as
its own, more closely knit, smaller social networks or even a trusted subgraph
of the larger network. Using Dirichlet PageRank, a user can compute a ranking
on the smaller network, and then use boundary conditions appropriately to infer
a ranking on the remaining nodes in the larger network, taking its personal
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associations into account. We will develop an algorithm, PRTrustNetwork, for
this problem in Section 6.3.

Finally, we can use similar ideas to tackle the problem in the reverse direction:
Suppose a global ranking of the nodes in a large, loose social network such as
Twitter is known, and a user wants to develop a personalized ranking for a small
subgraph or its own trusted network, taking the global ranking into account.
We again can use Dirichlet PageRank with appropriate boundary conditions, as
outlined in the algorithm PRInferRanking, also in Section 6.3.

The rest of the paper proceeds as follows. In Section 2, we outline necessary
background on PageRank and Dirichlet boundary conditions. Section 3 devel-
ops the theory of PageRank with Dirichlet boundary conditions, and Section 4
extends this theory for arbitrary boundary conditions σ. We develop and an-
alyze the ApproxDirichPR algorithm in Section 5 and give algorithms for the
previously discussed applications in Section 6.

2. Preliminaries

For a connected undirected graph G = (V,E) with n vertices and m edges, let
A be the adjacency matrix and D the diagonal degree matrix, where Dii is the
degree of the ith vertex. A typical random walk on G is defined by the transition
probability matrix D−1A. In this paper, we consider a lazy random walk that is
defined by the lazy transition probability matrix

W =
1
2
(I + D−1A).

The normalized Laplacian L is defined by

L = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2 .

The normalized Laplacian L and its spectrum are useful in analyzing graphs and
their associated random walks (see [Chung 97] for more details).

The restricted Laplacian LS is the submatrix of L restricted to S × S. The
restricted Green’s function GS,β is defined by

GS,β (βIS + LS ) = IS ,

where β ≥ 0. Note that LS is positive definite [Chung and Yau 00], so GS,β is
well defined.

The PageRank vector pr has two parameters: the teleportation constant α ≥ 0
and the seed vector s. For given α and s, the PageRank pr is defined to be the
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unique solution to the PageRank equation

pr = αs + (1 − α) pr W, (2.1)

where we treat s and pr as row vectors. This paper uses the lazy random walk
transition matrix W instead of the regular random walk transition matrix D−1A,
but the two PageRank definitions are equivalent up to a change in teleportation
constant α (see [Andersen et al. 06]). PageRank was first introduced in [Brin and
Page 98] to measure the importance of Web pages (with the seed vector s = �1/n),
and it has since been applied to many problems, including the measurement of
trust in social networks [Andersen et al. 08]. Fast approximation algorithms for
PageRank can be found in [Andersen et al. 06, Chung and Yau 10].

We can also write PageRank as a geometric sum of random walks [Andersen
et al. 06]:

pr = αs + α

∞∑
t=1

(1 − α)tsW t.

This allows us to see that pr, with the same teleportation constant α, is linear
in its seed vector s.

3. PageRank with Dirichlet Boundary Conditions

Let S denote a subset of the vertex set V of G. The volume vol(S) denotes the
sum of the degrees of vertices in S. The vertex boundary δ(S) is defined by

δ(S) = {u | u /∈ S and ∃v ∈ S, (v, u) ∈ E}.

The essential question proposed in Problem 1.1 is how to take into account
the boundary edges. We remark that in the classical areas of differential equa-
tions defined on some geometric spaces, the boundary conditions refer to the
constraints defined on the boundaries of specified regions and are imposed on
the solutions of the equations. For the PageRank equation, the lazy random walk
transition matrix W is closely related to the normalized Laplacian L, which is the
analogue of the Laplace–Bertrami operator in differential geometry. Thus, the
PageRank equation (2.1) can be regarded as a discrete analogue of a set of dif-
ferential equations, and Dirichlet PageRank can be viewed as a solution of the
PageRank equation with boundary conditions. The basic problem of deriving
PageRank vectors with Dirichlet boundary conditions was also previously exam-
ined in [Chung 10].
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Let S be a subset of G. For a function (or vector) f : V → R , we say that f

satisfies the Dirichlet boundary condition if

f(v) = 0 for all v ∈ δ(S).

The PageRank vector satisfying the Dirichlet boundary condition is the solu-
tion of the following equation, for all vertices v:

pr(v) =

{
αs(v) + (1 − α)

∑
u∈V pr(u)Wuv if v ∈ S,

0 otherwise.
(3.1)

Let prS and sS denote the vectors pr and s restricted to S, respectively. Similarly,
let WS ,DS ,AS denote the respective matrices restricted to S × S.

Theorem 3.1. For a connected graph G, vector s, and α > 0, the PageRank equation
(3.1) has one and only one solution. With β = 2α/(1 − α), it is given by

prS = βsS D
−1/2
S GS,β D

1/2
S .

Proof. Since pr(v) = 0 when v /∈ S, the PageRank equation (3.1) is equivalent to

prS = αsS + (1 − α) prS WS .

Since

W =
1
2
(I + D−1A) = I − 1

2

(
D−1/2LD1/2

)
and D is a diagonal matrix, we have

WS = IS − 1
2

(
D

−1/2
S LS D

1/2
S

)
.

Thus, we have

prS = αsS + (1 − α) prS

(
IS − 1

2

(
D

−1/2
S LS D

1/2
S

))
.

Solving for prS yields the theorem; uniqueness follows from the uniqueness
of GS,β .

Using Dirichlet PageRank vectors with Dirichlet boundary conditions, we can
solve Problem 1.1 in a straightforward way, and it is clear that vertices outside
of S will not influence the ranking. However, it is not immediately apparent how
the boundary edges affect the ranking result. In Figure 1, comparisons are given
between rankings obtained by three methods. For a small graph, we compute
the Dirichlet PageRank vector and compare it with the following two alternative
methods:
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Figure 1. (a) Ranking computed by Method 1. (b) Ranking computed by Method
2. (c) Ranking computed by Dirichlet PageRank.

Method 1. Compute the PageRank for the entire graph and simply use these
values on the subgraph.

Method 2. Delete the rest of the graph including boundary edges; then com-
pute the PageRank for the remaining induced subgraph.

We note that the difference between Method 1 and Dirichlet PageRank is
the relative ranking of vertices b and d. Using Method 1, b and d have the same
ranking, while with Dirichlet PageRank, b has a higher ranking. This is consistent
with the fact that in this subgraph, b is trusted by all other vertices, while d is
trusted by only two out of three other nodes. Note that d is also trusted by
another vertex outside of the subgraph, but the influence of the outside vertex
is not as significant.

The difference between Method 2 and Dirichlet PageRank is the relative rank-
ing of vertices c and d. By Method 2, c and d have the same ranking; by Dirichlet
PageRank, d has a slightly higher ranking. This is consistent with the fact that
c and d trust each other and are trusted by b. In addition, d is trusted by one
vertex from outside, reflected by a higher ranking of d.

We give another Dirichlet PageRank example in Figure 2. In Figure 2(a), a
social network [Lusseau et al. 03] has nodes shaded according to their PageRank
(for the case of α = 0.1). Now suppose we have identified two spammers and
want to penalize their ranking and influence, as described in Problem 1.3. In
Figure 2(b), we simply compute the usual PageRank and set the rank of the
two spammers to zero. This is equivalent to the ranking algorithm proposed in
[Gyöngyi et al. 04]. In Figure 2(c), we compute the Dirichlet PageRank with the
boundary condition σ(u) = σ(v) = 0 for the spammers u and v. It is apparent
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Figure 2. Three rankings of a network [Lusseau et al. 03]. Darker shades indicate
higher ranking. (a) PageRank of the graph with α = 0.1. (b) PageRank of the
graph, with two “spammers” identified with zero rank. (c) Dirichlet PageRank of
the graph, with the nodes around the two “spammers” showing decreased rank
(color figure available online).

that the rankings of the nodes surrounding the spammers have been decreased,
illustrating the effects of propagation of distrust.

These two examples serve as an illustration of the contributions of the bound-
ary edges to the ranking, made more rigorous in the following lemma.

Let pr′ be the PageRank vector computed by Method 1, and let pr′′ denote
the PageRank computed by Method 2. It is easy to see that for every v ∈ S, we
have pr(v) ≤ pr′(v). We define two vertex sets So and Si :

So = {v ∈ S | ∃u /∈ S : (u, v) ∈ E} and Si = S \ So.

Let Wii and Woi denote W restricted to Si × Si and So × Si , respectively. Sim-
ilarly, we define two vectors wo and wi :

wo = (1 − α)1WT
oi and wi = 1 − (1 − α)1WT

ii .

Lemma 3.2. Suppose that both So and Si are nonempty. Then we have

pr′So
wT

o

pr′Si
wT

i

≥ prSo
wT

o

prSi
wT

i

≥ pr′′So
wT

o

pr′′Si
wT

i

.

Proof. Let W ′′ denote the lazy random walk transition probability matrix of GS ,
where GS is the subgraph of G restricted to S. Then the following equations
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hold:

pr′Si
= αsSi

+ (1 − α)
(
pr′Si

Wii + pr′So
Woi

)
, (3.2)

prSi
= αsSi

+ (1 − α)
(
prSi

Wii + prSo
Woi

)
, (3.3)

pr′′Si
= αsSi

+ (1 − α)
(
pr′′Si

W ′′
ii + pr′′So

W ′′
oi

)
. (3.4)

Let c1 = αsSi
1T ; the definitions of wo and wi give

prSo
wT

o

prSi
wT

i

=
prSi

wT
i − c1

prSi
wT

i

.

Subtracting (3.3) from (3.2) yields

(pr′Si
−prSi

) (I − (1 − α)Wii) = (pr′So
−prSo

) ((1 − α)Woi) .

Let c2 = (pr′Si
−prSi

) (I − (1 − α)Wii)1T . Since for all v ∈ S, we have pr(v) ≤
pr′(v), it follows that pr′Si

−prSi
and c2 are both nonnegative. Thus, we have

pr′So
wT

0

pr′Si
wT

i

=
pr′Si

wT
i − c1

pr′Si
wT

i

=
prSi

wT
i + c2 − c1

prSi
wT

i + c2
.

Since for every v ∈ So , the degree of v in GS is strictly smaller that the degree of
v in G, we have W ′′

v ,u ≥ Wv,u (1 + 1/d), where d is the maximum degree among
vertices in So in GS . For v ∈ Si , there is no change in degree from G to GS , so
Wii = W ′′

ii . Hence, we have

pr′′Si
(I − (1 − α)Wii) = αsSi

+ pr′′So
((1 − α)W ′′

oi)

≥ αsSi
+ pr′′So

((1 − α)Woi)
(

1 +
1
d

)
.

Therefore,

pr′′So
wT

o

pr′′Si
wT

i

≤ prSi
wT

i − c1

(1 + 1/d) prSi
wT

i

,

and the lemma follows from

prSi
wT

i + c2 − c1

prSi
wT

i + c2
≥ prSi

wT
i − c1

prSi
wT

i

≥ prSi
wT

i − c1

(1 + 1/d) prSi
wT

i

.

We remark that pr′′ tends to underestimate the ranking, since it ignores all the
boundary edges. In the other direction, the influence of boundary nodes should
be taken into consideration but not so much as to overestimate the PageRank
on So in comparison with pr′So

. Lemma 3.2 shows that prSo
is bounded between

pr′′So
and pr′So

, as desired.
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4. Dirichlet PageRank with Given Boundary Conditions

In this section, we generalize Dirichlet PageRank to use arbitrary boundary
conditions given by σ : δ(S) → R . Note that σ can have negative values.

The Dirichlet PageRank vector with given boundary conditions σ is defined
by the equations

pr(v) =

{
αs(v) + (1 − α)

∑
u∈V pr(u)Wuv if v ∈ S,

σ(v) if v ∈ δ(S).
(4.1)

Here, we use the convention that |σ| ≤ 1. Let Wδ(S ) denote W restricted to
δ(S) × S.

Theorem 4.1. For a connected graph G, vector s, α > 0, and given boundary con-
ditions σ, the PageRank equation (4.1) has one and only one solution. With
β = 2α/(1 − α), it is given by

prS =
(
βsS + 2σδ(S )Wδ(S )

)
D

−1/2
S GS,β D

1/2
S .

Proof. Note that

prS = αsS + (1 − α)
(
prS WS + σδ(S )Wδ(S )

)
(4.2)

=
1 − α

2
(
βsS + 2σδ(S )Wδ(S )

)
+ (1 − α) prS WS .

The theorem follows by expressing WS in terms of LS and solving for prS , as in
the proof of Theorem 4.1.

To solve Problem 1.2, one can adjust the ranking by setting boundary condi-
tions σ and solving the Dirichlet PageRank equation. We can use σ to specify
known quantitive distrust, which will then propagate to the rest of vertices in S.

5. Algorithms and Analysis

Solving the PageRank equation (3.1) or (4.1) with boundary conditions requires
both matrix–vector multiplication and solving a linear system of the form

x(βIS + LS ) = y.

The running time of solving the PageRank equation is dominated by the com-
plexity of solving the linear system. Since the matrix βIS + LS is diagonally
dominant, it can be solved approximately in nearly linear time with a Spielman–
Teng solver [Spielman and Teng 08], but we will also give a simpler algorithm,
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Algorithm 1. (ApproxDirichPR)
Input: G, S, α, s, σ, ε
Output: prS

prS ⇐ 0, ε′ ⇐ 1, r ⇐ αsS + (1 − α)σδ (S )Wδ (S )
while ε′ > ε do

while |r(v)| ≥ ε′dv for some v do
prS (v) ⇐ prS (v) + r(v)
For each neighbor u of v, r(u) ⇐ r(u) + (1 − α)r(v)/2dv

r(v) ⇐ (1 − α)r(v)/2
end while
ε′ ⇐ ε′/2

end while

ApproxDirichPR, to compute approximate Dirichlet PageRank vectors. This ap-
proximation algorithm is faster and has a better approximation ratio if the con-
stant α is not too small.

The algorithm ApproxDirichPR (Algorithm 1) is outlined as follows: We ini-
tialize prS as 0 and maintain a residue r, which is the difference between the
right side and left side of (4.2). Then we gradually move the “mass” from r to
prS while maintaining the invariant

prS +r = αsS + (1 − α)
(
prS WS + σδ(S )Wδ(S )

)
until we have r(v) ≤ ε′dv for every v ∈ S. At the start, we set ε′ = 1. After
each iteration, we decrease ε′ by half until ε′ ≤ ε, which is the given desired
approximation ratio.

To analyze the above algorithm, the proof of Theorem 1.5 is given as follows.

Proof of Theorem 1.5. To bound the running time, we first show that in each iteration
of the inner loop, |r|1 will decrease by at least αε′dv . Let rb be r before the
iteration and let ra be r after the iteration. We have

|ra |1 = |ra(v)| +
∑
u 
=v

|ra(u)| =
1 − α

2

∣∣rb(v)
∣∣ +

∑
u 
=v

∣∣∣∣rb(u) +
1 − α

2dv
rb(v)

∣∣∣∣
≤ 1 − α

2

∣∣rb(v)
∣∣ +

∑
u 
=v

(∣∣rb(u)
∣∣ +

1 − α

2dv

∣∣rb(v)
∣∣)

= (1 − α)
∣∣rb(v)

∣∣ +
∑
u 
=v

∣∣rb(u)
∣∣ =

∣∣rb
∣∣
1 − α

∣∣rb(v)
∣∣ .

We note that the above equations hold for both positive and negative values
of rb(v). Since v is chosen to satisfy |r(v)| ≥ ε′dv , it follows that |ra |1 ≤ |rb |1 −
αε′dv .
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Note that at the beginning of each iteration of the outer loop, we have |r| ≤
2ε′ vol(S). Let T be the number of iterations of the inner loop and vi the vertex
selected at the ith iteration for 1 ≤ i ≤ T . We have

T∑
i=1

αε′dvi
≤ 2ε′ vol(S),

which implies

T∑
i=1

dvi
≤ 2 vol(S)

α
.

Since a FIFO queue can be used to store every vertex v such that |r(v)| ≥ ε′dv ,
each iteration of the inner loop can be completed in O(dv ) time. Therefore, the
running time of one outer iteration is

∑T
i=1 dvi

, which is bounded from above by
2 vol(S)/α.

There are log 1/ε iterations of the outer loop; therefore, the overall running
time is

O

(
vol(S) log 1/ε

α

)
.

To prove the correctness of the approximation ratio, we will first show that
the following invariant is maintained during the entire algorithm:

prS +r = αsS + (1 − α)
(
prS WS + σδ(S )Wδ(S )

)
.

This equation holds trivially in the beginning, where prS = 0 and r = αsS + (1 −
α)σδ(S )Wδ(S ) . For each inner iteration, let rb , prb

S be r, prS before the iteration,
and let ra , pra

S be r, prS after the iteration. We have

pra
S (v) + ra(v)

= prb
S (v) + rb(v) +

1 − α

2
rb(v)

= αsS (v) + (1 − α)
(
[prb

S WS ](v) + [σδ(S )Wδ(S ) ](v)
)

+
1 − α

2
rb(v)

= αsS (v)

+ (1 − α)

⎛⎝1
2

prb
S (v) +

∑
w 
=v

1
2dw

prb
S (w) + [σδ(S )Wδ(S ) ](v)

⎞⎠ +
1 − α

2
rb(v)
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= αsS (v)

+ (1 − α)

⎛⎝1
2

(
prb

S (v) + rb(v)
)

+
∑
w 
=v

1
2dw

prb
S (w) + [σδ(S )Wδ(S ) ](v)

⎞⎠
= αsS (v) + (1 − α)

⎛⎝1
2

pra
S (v) +

∑
w 
=v

1
2dw

pra
S (w) + [σδ(S )Wδ(S ) ](v)

⎞⎠
= αsS (v) + (1 − α)

(
[pra

S WS ](v) + [σδ(S )Wδ(S ) ](v)
)
,

and for u 
= v, we have

pra
S (u) + ra(u)

= prb
S (u) + rb(u) +

1 − α

2dv
rb(v)

= αsS (u) + (1 − α)
(
[prb

S WS ](u) + [σδ(S )Wδ(S ) ](u)
)

+
1 − α

2dv
rb(v)

= αsS (u)

+ (1 − α)

⎛⎝1
2

prb
S (u) +

∑
w 
=u

1
2dw

prb
S (w) + [σδ(S )Wδ(S ) ](u)

⎞⎠ +
1 − α

2dv
rb(v)

= αsS (u)

+ (1 − α)

⎛⎝1
2

pra
S (u) +

∑
w 
=u

1
2dw

pra
S (w) − 1

2dv
rb
S (v) + [σδ(S )Wδ(S ) ](u)

⎞⎠
+

1 − α

2dv
rb(v)

= αsS (u) + (1 − α)

⎛⎝1
2

pra
S (u) +

∑
w 
=u

1
2dw

pra
S (w) + [σδ(S )Wδ(S ) ](u)

⎞⎠
= αsS (u) + (1 − α)

(
[pra

S WS ](u) + [σδ(S )Wδ(S ) ](u)
)
.

Thus, the invariant is maintained during the entire algorithm. Note that the
equations hold for both positive and negative values of r. As a result, the output
p̃rS satisfies

p̃rS + r = αsS + (1 − α)
(
p̃rS WS + σδ(S )Wδ(S )

)
,

where |r(v)| < εdv for all vertices v ∈ S, and the exact solution prS satisfies

prS = αsS + (1 − α)
(
prS WS + σδ(S )Wδ(S )

)
.
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Taking the difference of these two equations, we get

prS −p̃rS = r + (1 − α) ((prS −p̃rS )WS ) .

Since

|(prS −p̃rS )WS |1 ≤ |prS −p̃rS |1 ,
we have

|prS −p̃rS |1 ≤ |r|1 + (1 − α)|(prS −p̃rS )WS |1 ≤ |r|1 + (1 − α)|prS −p̃rS |1 ,
which implies

|prS −p̃rS |1 ≤ 1
α
|r|1 <

ε vol(S)
α

.

6. Applications of Dirichlet PageRank

6.1. Allowing Negative Edges in the Graph

Negative edges arise in many network problems, making PageRank less suitable
for finding a desirable ranking (see [de Kerchove and Dooren 08]). There have
been numerous attempts to address this problem. One way is to ignore the entries
corresponding to the negative links, as seen as in [Kamvar et al. 03, Langville
and Meyer 06]. By treating a negative link between two vertices the same as no
link [Kamvar et al. 03, Langville and Meyer 06], the PageRank vector can be
computed and used as a ranking. Unfortunately, the information contained in
those negative links is lost. To remedy this, in [Guha et al. 04], a trust ranking
is computed based on only positive links and one single step of propagation of
distrust. Namely, the distrust is propagated only to immediate neighbors without
influencing the rest of the vertices. A more sophisticated algorithm, PageTrust,
is proposed in [de Kerchove and Dooren 08], which uses a fairly complicated
update rule relying on a relatively large number of iterations until convergence.
However, the running time for each iteration is quite large: O

(
dnn−)

, where d

is the average degree and n− is the number of vertices receiving negative links.
Thus, the worst-case complexity is O(n3).

Using Dirichlet PageRank, we develop a simple and fast algorithm to propagate
distrust in graphs with negative edges. The key idea can be outlined as follows:
we first compute the usual PageRank based on positive edges; then, based on
the ranking result, we convert negative links to boundary conditions and then
compute the Dirichlet PageRank.
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Algorithm 2. (NegLinkPageRank)
Input: G = (V,E), v, α, ε

Output: pr
Determine Ĝ, V s and E+ as described above.
pr+ ⇐ SharpApproximatePR(v, α, ε) using the graph (V,E+)
σ(u) ⇐ d−

d+ pr+(u) for each vertex u in V s

pr ⇐ ApproxDirichPR(Ĝ, V, α, v, σ, ε)

Let E+ be the set of positive edges, E− the set of negative edges, and V − the set
of vertices incident to negative edges. Let d−(u) and d+(u) denote the numbers of
negative and positive edges incident to u, respectively. For each vertex u ∈ V −,
we create a shadow vertex us . Let V s denote the set of all shadow vertices, and
define

Es =
{{us, v}, {u, vs}|{u, v} ∈ E−}

.

We then form a new graph Ĝ = (V̂ , Ê), where V̂ = V ∪ V s and Ê = E+ ∪ Es . In
Algorithm 2, we will set boundary conditions on V s in Ĝ to propagate distrust.

The intuition behind setting the values of the boundary condition σ(u) is as
follows: We let σ(u)/d− = pr+(u)/d+. Namely, for a vertex, the amount of dis-
trust propagated via the negative edge is equal to the amount of trust propagated
via the positive edge. The running time of this algorithm is nearly linear using
our ApproxDirichPR algorithm.

As an example of using Dirichlet PageRank on a graph with positive and
negative edges, we examine a network of tribes in New Guinea studied in the
mid-twentieth century [Hage and Harary 83, Read 54]. A positive edge indicates
a tribal alliance, and negative edges represent enemy relationships. As illustrated
in Figure 3(a), the positive edges are in light green, and the negative edges are
in light red. One way to calculate a vertex ranking is to ignore the negative
edges, as shown in Figure 3(a). The PageRank vector computed in this manner
is actually the uniform distribution. In Figure 3(b), we use Dirichlet PageRank to
compute a vertex ranking taking the negative edges into account. It is apparent
that vertices are appropriately ranked by taking advantages of their trusting and
distrusting relationships.

6.2. Adjusting Spammers’ Influence

One disadvantage of purely link-based ranking systems such as PageRank is
that they interpret all nodes as honest agents and all links as votes or validation
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Figure 3. Comparison of vertex rankings in a network [Hage and Harary 83,
Read 54]. (a) PageRank, computed by ignoring negative links. (b) Dirichlet Page-
Rank, taking negative links into account (color figure available online).

between nodes. However, real-world networks such as the World Wide Web often
contain malicious nodes or spammers. Of interest is to find ranking systems that
can better represent the true ranking of nodes in the graph.

There are many schemes that have been developed to tackle such problems
[Andersen et al. 08, Benczur et al. 05, Borgs et al. 10, Cheng and Fried-
man 05, Guha et al. 04, Gyöngyi et al. 04, Kamvar et al. 03, de Kerchove and
Dooren 08]. It turns out that many of them can be modeled using Dirichlet
PageRank with different boundary conditions. For example, [Benczur et al. 05]
outlines an algorithm, SpamRank, that penalizes spam nodes. This algorithm
uses sampling to find nodes whose PageRank vectors are significantly different
from their neighbors’, and gives a heuristic penalty score for each node. It then
uses these penalty scores as a seed vector for personalized PageRank compu-
tation. However, if the penalties are represented by a probability distribution,
the sampling techniques can be problematic for vertices with low degree. Using
Dirichlet PageRank, we can penalize known spammers v by enforcing the condi-
tion pr(v) = 0. This is done in the example given in Figure 2. Furthermore, one
can adjust the ranking even further by enforcing pr(v) = −1.

In [Borgs et al. 10], the trust and distrust are propagated within a network
through a weighted random walk W with a trusted seed vertex s by assigning
at the start, the rank pr(s) = 1. This can be regarded as Dirichlet PageRank
with the boundary condition σ(s) = 1. There is a subtle difference in the way
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Algorithm 3. (PRTrustedFriends)
Input: G = (V, E), v, α, ρ, ε
Output: �p

Compute v’s ranking: �p ⇐ SharpApproximatePR(v, α, ε) [Chung and Yau 10]
Compute v’s neighbors’ rankings: for each neighbor u,
�pu ⇐ SharpApproximatePR(u, α, ε)
Take a weighted average of v’s neighbors’ rankings:
�p′ ⇐ ∑

u∼v p(u)/
∑

u∼v p(u)�pu .
Take a set S of nodes that v ranks highly:
S ⇐ arg maxS⊆V , |S |≤ρ |V |

∑
s∈S p(s)

Use v’s friends’ ranking of S to adjust �p:
�p ⇐ ApproxDirichPR(G, V \ S, α, v, �p′, ε)

distrust is handled (the algorithm in [Borgs et al. 10] does not allow for the
propagation of trust scores less than 0). We note that Dirichlet PageRank allows
us to efficiently consider these and many other models.

6.3. Adjusting Rank Based on Trust

While it is important to devise ranking systems that take known spammers into
account, it is also crucial to be able to calculate a ranking based on various
notions of trust in a network. There are numerous scenarios in which Dirichlet
PageRank with boundary conditions can serve as a useful algorithmic tool.

We consider the following problem: In a network G, the node v wants to
compute a personalized ranking of the nodes, but v trusts its own friends and
wants its ranking in the top ρ fraction of nodes to be similar to its friends’
rankings. This quantifies the assumptions that one’s friends’ actions carry a
great deal of weight in one’s own decisions. Vertex v can efficiently compute
a personalized PageRank vector as its ranking function using algorithms from
[Chung and Yau 10]. However, PageRank alone will not take into account the
implied trust between v and its friends. But using Dirichlet PageRank with
boundary conditions, we can take v’s trusted friends into account. We illustrate
this in the algorithm PRTrustedFriends (Algorithm 3).

A natural extension of PRTrustedFriends can be described as the case that
v is a newcomer to a network and is therefore unsure about what other nodes
are trustworthy. In such a scenario, the only available information to v is the
network itself. For ranking purposes, v can select a small number of nodes to
compare with its own ranking. If these nodes are well distributed, this provides
some control to ensure that v’s own ranking function is not too distorted by
the presence of nearby spammers or malicious nodes. We give the algorithm
PRValidation as Algorithm 4.
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Algorithm 4. (PRValidation)
Input: G = (V, E), v, k, α, ρ, ε
Output: �p

Compute v’s ranking: �p ⇐ SharpApproximatePR(v, α, ε) [Chung and Yau 10]
v1 , . . . , vk ⇐ i.i.d. samples from V according to �p
Compute rankings for the sampled nodes:
�pk ⇐ SharpApproximatePR(vk , α, ε)
Take a weighted average of these sampled rankings:
�p′ ⇐ 1∑k

i = 1
p (v k )

∑k
i=1 p(vk )�pk

Take a set S of nodes that v ranked highly:
S ⇐ arg maxS⊆V , |S |≤ρ |V |

∑
s∈S p(s)

Use the sampled rankings to adjust �p:
�p ⇐ ApproxDirichPR (G, V \ S, α, v, �p′, ε)

A third, more complex, situation arises in the context of different types of
social networks. Although the setup here appears somewhat complicated, it is a
natural model for a common social phenomenon, addressing distinctions among
different types of social networks.

Suppose that we have two networks G1 = (V1 , E1) and G2 = (V2 , E2) with
V1 ⊆ V2 . We interpret G1 as a closely knit social network in which edges represent
a deep mutual trust for one another. The network G2 is a larger network whose
edges are formed for relatively weak reasons, such as acquaintance or curiosity.
We assume that a vertex v does not know much about the many sources of
information acquired through G2 . An important question for v is to determine
which nodes in G2 are trustworthy. How should the vertices of G2 be ranked by
taking advantage of G1?

One effective way of finding such a ranking for vertices v in G2 is to com-
pute the ranking on G1 first and then compute the Dirichlet PageRank on G2

using G1 ’s ranking as the boundary condition. This is outlined in the algorithm
PRTrustNetwork (Algorithm 5).

Dirichlet PageRank can also be used to solve a related problem when a global
ranking for G2 is already known or precomputed. Suppose that such a ranking
for G2 exists, and a vertex v ∈ G1 wishes to be able to rank G1 by taking this
into account. One way to do this is to compute a Dirichlet PageRank vector for

Algorithm 5. (PRTrustNetwork)
Input: G1 = (V1 , E1 ), G2 = (V2 , E2 ), v ∈ V1 ∩ V2 , α, ε
Output: �q

�p ⇐ SharpApproximatePR(v, α, ε) [Chung and Yau 10] for G1
�q ⇐ ApproxDirichPR (G2 , V2 \ V1 , α, v, �p, ε)
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Algorithm 6. (PRInferRanking)
Input: G2 = (V2 , E2 ), G1 = (V1 , E1 ) ⊆ G2 , v ∈ V1 , �p, α, ε
Output: �q

∂E1 ⇐ {(w, x) ∈ E2 |w ∈ V1 , x /∈ V1}
∂V1 ⇐ {w ∈ V2 \ V1 |w is an endpoint of an e ∈ ∂E1}
�q ⇐ ApproxDirichPR ((V1 ∪ ∂V1 , E1 ∪ ∂E1 ), V1 , α, v, �p, ε)

G1 but using the adjacent nodes in G1 as a boundary with ranking given by the
global ranking on G2 . This procedure is given in the algorithm PRInferRanking
(Algorithm 6).

In this section, we have examined several examples as applications of Dirichlet
PageRank vectors. The list is by no means complete. These examples offer a
glimpse of the applicability and flexibility of Dirichlet PageRank. Further appli-
cations and research directions remain to be explored.
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