
Internet Mathematics Vol. 6, No. 4: 489–522

A Sequential Importance Sampling
Algorithm for Generating Random
Graphs with Prescribed Degrees
Joseph Blitzstein and Persi Diaconis

Abstract. Random graphs with given degrees are a natural next step in complexity
beyond the Erdős–Rényi model, yet the degree constraint greatly complicates simula-
tion and estimation. We use an extension of a combinatorial characterization due to
Erdős and Gallai to develop a sequential algorithm for generating a random labeled
graph with a given degree sequence. The algorithm is easy to implement and allows for
surprisingly efficient sequential importance sampling. The resulting probabilities are
easily computed on the fly, allowing the user to reweight estimators appropriately, in
contrast to some ad hoc approaches that generate graphs with the desired degrees but
with completely unknown probabilities. Applications are given, including simulating an
ecological network and estimating the number of graphs with a given degree sequence.

1. Introduction

Random graphs with given degrees have recently attracted great interest as a
model for many real-world complex networks, allowing for heterogeneity between
vertices that is unavailable in the Erdős–Rényi model. The main result of this
paper is a new sequential importance-sampling algorithm for generating random

C© Taylor & Francis Group, LLC
ISSN: 1542-7951 print 489

490 Internet Mathematics

Figure 1. Food web for the Chesapeake Bay ecosystem in summer.

graphs with a given degree sequence. The idea is to build up the graph sequen-
tially (one edge at a time), where each choice has a known probability so that
importance sampling can be used to estimate quantities of interest.

Most previously studied algorithms for this problem either sometimes get stuck
or produce loops or multiple edges in the output, requiring frequent restarts.
Often for such algorithms, the probability of a restart being needed on a trial
rapidly approaches 1 as the degree parameters grow, resulting in an enormous
number of trials being needed on average to obtain even one graph. A major
advantage of our algorithm is that it never gets stuck. This is achieved using an
extension of the Erdős–Gallai characterization, which is explained in Section 2,
and a carefully chosen order of edge selection. Throughout, we are concerned
with generating simple graphs, i.e., no loops or multiple edges are allowed (the
problem becomes considerably easier if loops and multiple edges are allowed).

For example, the graph in Figure 1 is the observed food web of 33 types of
organism (such as bacteria, oysters, and catfish) in the Chesapeake Bay during
the summer. The data are from [Baird and Ulanowicz 89] and are available on-
line [Ulanowicz 05]. Each vertex represents one of the 33 types of organism, and
an edge between two vertices indicates that one preys upon the other (see Sec-
tion 10 for further details about the data and discussion of directed vs. undirected
graphs).

The degree sequence of the above graph is

d = (7, 8, 5, 1, 1, 2, 8, 10, 4, 2, 4, 5, 3, 6, 7, 3, 2, 7, 6, 1, 2, 9, 6, 1, 3, 4, 6, 3, 3, 3, 2, 4, 4).

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 491

Applying importance sampling as explained in Section 9, with 100,000 trials,
gave (1.533 ± 0.008) × 1057 as the estimated number of graphs with the same
degree sequence d.

A natural way to test properties of the food web is to condition on the de-
gree sequence, generate a large number of random graphs with the same degree
sequence, and then see how the actual food web compares. See Section 10 for
details of such a conditional test for this example, using 6000 random graphs
with degree sequence d generated by our algorithm. An R implementation is
available on the first author’s web page or by e-mail request. Other applica-
tions of our algorithm (based on an earlier version of this work) are given in
[Beichl and Cloteaux 08], which studies how closely connected to each other
high-degree vertices are, and [Olding and Wolfe 09], which discusses hypothesis
testing for network structure (where Erdős–Rényi would be the simplest null
model, but usually we want to be able to incorporate some heterogeneity in the
vertices).

Section 3 reviews several previous algorithms for our problem. Section 4
presents our algorithm, and Section 5 gives a proof that the algorithm works.
The algorithm relies on an extension of the Erdős–Gallai theorem to handle the
case in which certain edges are forced (required to be used); this is discussed in
Section 6. This is followed in Section 7 by some estimates of the running time.

The probability of a given output for our algorithm is explicitly computable.
The output distribution is generally nonuniform, but the random graphs pro-
duced can be used to simulate a general distribution via importance sampling.
These ideas are discussed in Section 8, which describes sequential importance
sampling and its practical and theoretical performance (many open problems
remain about rigorous bounds on the variance). Applications to approximately
enumerating graphs with a given degree sequence are then given in Section 9.
Lastly, in Section 10 we describe an exponential family in which the degrees are
sufficient statistics, and use the algorithm to test this model on the food web
example.

2. Graphical Sequences

Definition 2.1. A finite sequence (d1 , . . . , dn) of nonnegative integers n ≥ 1 is called
graphical if there is a labeled simple graph (no loops or multiple edges) with
vertex set {1, . . . , n} in which vertex i has degree di . Such a graph is called a
realization of the degree sequence (d1 , . . . , dn).

There are many well-known efficient tests of whether a sequence is graph-
ical, e.g., [Mahadev and Peled 95] lists eight equivalent necessary and

492 Internet Mathematics

sufficient conditions. The most famous such criterion appears in [Erdős and
Gallai 60]:

Theorem 2.2. (Erodös–Gallai.) Let d1 ≥ d2 ≥ · · · ≥ dn be nonnegative integers with∑n
i=1 di even. Then d = (d1 , . . . , dn) is graphical if and only if

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(k, di) for each k ∈ {1, . . . , n}.

The necessity of these conditions is easy to see: for any set S of k vertices in
a realization of d, there are at most

(
k
2

)
“internal” edges within S, and for each

vertex v /∈ S, there are at most min(k,deg(v)) edges from v into S. Note that
the Erdős–Gallai conditions can be checked using Θ(n) arithmetic operations
and comparisons and Θ(n) space, since we can compute and cache the n partial
sums of the degrees and for each k, the largest i with min(k, di) = k (if any
exists), and there are n inequalities to check. Also, d needs to be sorted initially
if not already given in that form. This can be done in O(n log n) time using a
standard sorting algorithm.

Instead of having to test all of the inequalities in the Erdős–Gallai conditions,
it is often convenient to have a recursive test. A particularly simple recursive
test has been found [Havel 55, Hakimi 62]. We include a proof for motivation
and future use.

Theorem 2.3. (Havel–Hakimi.) Let d be a proposed degree sequence of length n ≥ 2 and
let i be a coordinate with di > 0. If d does not have at least di positive entries
other than i, then d is not graphical. Assume that there are at least di positive
entries other than at i. Let d̃ be the degree sequence of length n − 1 obtained
from d by deleting coordinate i and subtracting 1 from the di coordinates in d of
highest degree, aside from i itself. Then d is graphical if and only if d̃ is graphical.
Moreover, if d is graphical, then it has a realization in which vertex i is joined
to any choice of the di highest-degree vertices other than i.

Proof. If d does not have at least di positive entries other than i, then there are not
enough vertices to attach i to, so d is not graphical. So assume that there are at
least di positive entries aside from i. It is immediate that if d̃ is graphical, then
d is graphical: take a realization of d̃ (with labels (1, 2, . . . , i − 1, i + 1, . . . , n)),
introduce a new vertex labeled i, and join i to the di vertices whose degrees had
1 subtracted from them.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 493

Conversely, assume that d is graphical, and let G be a realization of d. Let
h1 , . . . , hdi

be a choice of the di highest-degree vertices other than vertex i (so
deg(hj) ≥ deg(v) for all v /∈ {i, h1 , . . . , hdi

}). We are done if vertex i is already
joined to all of the hj , since then we can delete vertex i and its edges to obtain a
realization of d̃. So assume that there are vertices v and w (not equal to i) such
that w = hj for some j, v is not equal to any of h1 , . . . , hdi

, and i is adjacent to
v but not to w.

If deg(v) = deg(w), we can interchange vertices v and w without affecting any
degrees. So assume that deg(v) < deg(w). Then there is a vertex x �= v joined by
an edge to w but not to v. Perform a switching by adding the edges {i, w}, {x, v}
and deleting the edges {i, v}, {w, x}. This does not affect the degrees, so we still
have a realization of d. Repeating this if necessary, we can obtain a realization
of d in which vertex i is joined to the di highest-degree vertices other than i

itself.

The Havel–Hakimi theorem thus gives a recursive test for whether d is graph-
ical: apply the theorem repeatedly until either the theorem reports that the
sequence is not graphical (if there are not enough vertices available to connect
to some vertex) or the sequence becomes the zero vector (in which case d is
graphical). In practice, this recursive test runs very quickly, since there are at
most n iterations, each consisting in setting a component i to 0 and subtracting
1 from di components. The algorithm also needs to find the highest degrees at
each stage, which can be done by initially sorting d (in time O(n log n)) and then
maintaining the list in sorted order.

Note that when d is graphical, the recursive application of Havel–Hakimi con-
structs a realization of d, by adding at each stage the edges corresponding to the
change in the d vector. This is a simple algorithm for generating a deterministic
realization of d. In the next section, we survey previous algorithms for obtaining
random realizations of d.

3. Previous Algorithms

Several methods have been developed for generating random graphs with given
degrees, given degree distributions, or given expected degrees (see [Chung and
Lu 2002b, Chung and Lu 2002a] for the latter), each with its own strengths and
limitations. Here we focus on graphs with given degrees; note, though, that if
we wish to obtain a given degree distribution or given expected degrees, we may
first sample a random degree sequence with the desired properties, and then (if
graphical) use this as input to our algorithm. [Arratia and Liggett 05] gives the

494 Internet Mathematics

asymptotic probability that an i.i.d. degree sequence is graphical. In particular,
the asymptotic probability is 1/2 if the distribution has finite mean and is not
supported on only even degrees or on only odd degrees.

There are two main categories of such algorithms: random matchings meth-
ods, and Markov chain Monte Carlo methods. (An interesting algorithm not
fitting in either of these categories can be found in [Tinhofer 79, Tinhofer 90].
Tinhofer’s approach involves choosing random adjacency lists combined with an
accept/reject procedure, but this algorithm has resisted theoretical analysis.)

3.1. Pairing Model Algorithms

The pairing model (also known as the configuration model or stubs model) gener-
ates random multigraphs using random matchings: imagine “stubs” emanating
from each vertex, and randomly tying together pairs of stubs to form edges. This
algorithm has been rediscovered many times (see [Wormald 99, Bollobás 80, Ben-
der and Canfield 78]). The resulting multigraph is not uniformly distributed, but
conditional on it being a simple graph; it is uniformly distributed over graphs
with the given degrees. Unfortunately, as d increases, the probability of having
loops or multiple edges approaches 1 very rapidly. Bender and Canfield showed
that for d-regular graphs,

P (simple) ∼ e(1−d2)/4 as n → ∞.

To obtain more simple graphs, an obvious (but hard to analyze) modifica-
tion is to forbid any pairing that induces a loop or multiple edges, as studied
in [Steger and Wormald 99]. This can easily get stuck. Steger and Wormald
showed that for d-regular graphs, the probability of getting stuck is small for
d = o((n/(log3 n)1/11), and this bound in improved in [Kim and Vu 04] to
d = o(n1/3/ log2 n). For more general degrees, little is known about the prob-
ability of getting stuck or about the algorithm’s (nonuniform) distribution on
graphs.

3.2. Markov Chain Monte Carlo Algorithms

Several approaches using Markov chain Monte Carlo (MCMC) have been pro-
posed, often using the same switching move as in the proof of the Havel–Hakimi
theorem: from a graph G, pick two random edges {x, y} and {u, v} uniformly
with x, y, u, v distinct such that {x, u} and {y, v} are not edges, and then add the
edges {x, u}, {y, v} and delete the edges {x, y}, {u, v}. [Cooper et al. 07] studies
the mixing time of this chain for regular graphs. The corresponding random walk
on adjacency matrices is a well-known random walk on tables (see [Diaconis and

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 495

Gangolli 95, Diaconis and Sturmfels 98]). For regular graphs, another MCMC
algorithm was given in [Jerrum and Sinclair 90], based on perfect matchings in
a specially constructed graph.

For all of these chains, theoretical analysis is currently available only under
severe restrictions on the degrees (such as assuming that they are all equal), and
even then the mixing times are bounded by high-degree polynomials, which are
unlikely to be useful in practice for knowing how long to run the chain.

In short, we do not know any previously published algorithm that both works
well in practice for the counting and estimation problems discussed here and has
established theoretical properties for a wide range of degree sequences. Thus, we
use characterizations to avoid getting stuck and sequential importance sampling
to account for the probability distribution on graphs.

4. The Sequential Algorithm

We now present our sequential algorithm and describe some of its features. In
this discussion, degrees should be thought of as residual degrees unless otherwise
specified (how many edges still need to be chosen for each vertex); in particular,
we will start with the degree sequence d and add edges until the degree sequence
is reduced to 0. Since we will be frequently adding or subtracting 1 at certain
coordinates of degree sequences, we introduce some notation for this operation.

Notation. 4.1. For any vector d = (d1 , . . . , dn) and distinct i1 , . . . , ik ∈ {1, . . . , n},
define ⊕i1 ,...,ik

d to be the vector obtained from d by adding 1 at each of the
coordinates i1 , . . . , ik , and define 	i1 ,...,ik

analogously:

(⊕i1 ,...,ik
d)i =

{
di + 1 for i ∈ {i1 , . . . , ik},
di otherwise,

and

(i1 ,...,ik
d)i =

{
di − 1 for i ∈ {i1 , . . . , ik},
di otherwise.

For example, ⊕1,2(3, 2, 2, 1) = (4, 3, 2, 1) and 	1,2(3, 2, 2, 1) = (2, 1, 2, 1). With
this notation, our sequential algorithm can be stated compactly; see Algorithm 1.

For example, suppose that the starting sequence is (3, 2, 2, 2, 1). The algorithm
starts by choosing which vertex to join vertex 5 to, using the candidate list
{1, 2, 3, 4}. Say it chooses 2. The new degree sequence is (3, 1, 2, 2, 0). The degree

496 Internet Mathematics

Algorithm 1: Sequential algorithm for random graph with given degrees.
Input: a graphical degree sequence (d1 , . . . , dn).

1. Let E be an empty list of edges.

2. If d = 0, terminate with output E.

3. Choose the least i with di a minimal positive entry.

4. Compute candidate list J = {j �= i : {i, j} /∈ E and 	i,j d is graphical}.
5. Pick j ∈ J with probability proportional to its degree in d.

6. Add the edge {i, j} to E and update d to 	i,j d.

7. Repeat steps 4–6 until the degree of i is 0.

8. Return to step 2.

Output: E.

of vertex 5 is now 0, so the algorithm continues with vertex 2, etc. One possible
sequence of degree sequences is

(3, 2, 2, 2, 1) → (3, 1, 2, 2, 0) → (2, 0, 2, 2, 0) → (1, 0, 2, 1, 0) → (0, 0, 1, 1, 0)
→ (0, 0, 0, 0, 0),

corresponding to the graph with edge set {{5, 2}, {2, 1}, {1, 4}, {1, 3}, {3, 4}}. As
another example, we show in Figure 2 the first two of 6000 graphs generated using
our algorithm applied to the degree sequence of the food web of Figure 1. Each
took about 13 seconds to generate (on a 1.33-GHz PowerBook). Qualitatively,
they appear to be more spread out and less hierarchical than the actual food
web. We discuss this more in Section 10, comparing test statistics of the actual
graph with those of the random graphs.

Algorithm 1 always terminates in a realization of (d1 , . . . , dn). The output of
the algorithm is not uniformly distributed over all realizations of (d1 , . . . , dn) in
general, but every realization of (d1 , . . . , dn) has positive probability. importance-
sampling techniques can then be used to compute expected values with respect
to the uniform distribution (or a different desired distribution), as described in
Section 8. For the simpler problem of generating random labeled trees with given
degrees, the analogous algorithm (with suitable selection probabilities) turns out
to be exactly uniform.

We now make remarks on the specific steps and some ways of speeding up the
implementation of the algorithm.

Fi
gu

re
2.

R
an

do
m

gr
ap

hs
w

it
h

fo
od

w
eb

de
gr

ee
s.

497

498 Internet Mathematics

1. In step 4, any test for graphicality can be used; Erdős–Gallai is particularly
easy to implement and runs quickly.

2. It follows from Theorem 5.1 that a candidate at a later stage is also a
candidate at an earlier stage, within the same choice of i from step 3. Thus,
in step 4 it suffices to test candidates from the previous stage if that stage
had the same i.

3. Let m = |{j : dj ≥ j − 1}| be the corrected Durfee number of d. A beautiful
result (see [Mahadev and Peled 95, Theorem 3.4.1]) is that d is graphical if
and only if it satisfies the first m Erdős–Gallai inequalities. In many cases,
the corrected Durfee number m is much less than n, greatly reducing the
number of inequalities to check.

4. In step 5, any probability distribution p on J with p(j) > 0 for all j can
be used. An interesting problem here is to find a distribution p that makes
the output as close to uniform as possible. In our empirical tests, choosing
a candidate with probability proportional to its degree was significantly
better than choosing a candidate uniformly (see Section 8). But it remains
open to prove some sort of optimality here.

5. An alternative to step 4 is to pick j with {i, j} /∈ E randomly and accept
it if 	i,j d is graphical; otherwise, pick again without replacement. This
approach runs faster, but has the disadvantage that it becomes very difficult
to compute the probabilities discussed in Section 8, which are required for
importance sampling.

5. Proof that the Algorithm Works

The theorem below guarantees that the algorithm never gets stuck, by showing
that at least one candidate vertex always exists.

Theorem 5.1. Let d = (d1 , . . . , dn) be a graphical degree sequence with di > 0,
arranged so that dn = min{d1 , . . . , dn}. Let d = d(0) , d(1) , d(2) , . . . , d(j) = d̃ be
graphical degree sequences of length n (for some j ≥ 1) such that d(i) is obtained
from d(i−1) by subtracting 1 at coordinate n and at another coordinate vi not
previously changed. That is,

d(i) = 	n,vi
d(i−1) for i ∈ {1, . . . , j},

where n, v1 , . . . , vj are distinct. Then d has a realization containing all of the
edges {n, v1}, . . . , {n, vj}, and d̃ has a realization containing none of these edges.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 499

Proof. The desired realization of d immediately yields that of d̃, by deleting the
edges {n, v1}, . . . , {n, vj}, and conversely, the desired realization of d̃ immediately
gives that of d. Note that j ≤ dn , since the degree of vertex n in d(j) is dn − j.
We use a backward induction on j, over 1 ≤ j ≤ dn , by showing that the claim
is true for j = dn and that if it is true for j + 1, then it is true for j.

First assume j = dn , and let Gj be a realization of the degree sequence d(j) .
Note that vertex n has degree 0 in Gj . Adding edges in Gj from vertex n to each
vi , 1 ≤ i ≤ j, yields a graph with degree sequence d(0) containing the desired
edges. Now assume that the result holds for j + 1, and prove it for some fixed j

with 1 ≤ j ≤ dn − 1.
Call the vertices v1 , . . . , vj touched vertices, and the remaining vertices other

than vertex n untouched. The proof hinges on whether we can find a realization
of d(j) such that vertex n is adjacent to an untouched vertex.

Suppose that d(j) has a realization Gj containing an edge {n, x}, with x an
untouched vertex. Deleting the edge {n, x} yields a graph Gj+1 with degree
sequence d(j+1) of the form in the statement of the theorem, with j + 1 in place of
j and vj+1 = x. The inductive hypothesis then implies that d(0) has a realization
containing the edges {n, v1}, . . . , {n, vj+1}. So it suffices to show that d(j) has a
realization with an edge {n, x}, with x an untouched vertex.

Let T consist of the j touched vertices, and decompose T = A ∪ B, where a
touched vertex x is in A iff {n, x} is an edge in some realization of d(j) , and
B = T \ A. Here B may be empty, but we can assume that A is nonempty, since
otherwise any realization of d(j) has an edge {n, x} with x untouched. Let |A| = a

and |B| = b (so a + b = j).
Let x ∈ A and let y be an untouched vertex or y ∈ B. Consider a realization

of d(j) containing the edge {n, x}. Note that if the degrees of x and y are equal
in d(j) , then they can be interchanged without affecting any degrees, and then
{n, y} is an edge (which contradicts the definition of B if y ∈ B, and gives us
the desired edge if y is untouched). If the degree of x is less than that of y, then
we can perform a switching as in the proof of the Havel–Hakimi theorem (pick a
vertex w �= x adjacent to y but not adjacent to x, add edges {n, y}, {x,w}, and
delete edges {n, x}, {y, w}), again producing a realization with the edge {n, y}.
So assume that the degree of x is strictly greater than the degree of y in d(j) for
each x ∈ A and y that is either untouched or in B. Then the vertices in A have
the a highest degrees (excluding n itself) in d(j) .

Let d′ be the degree sequence with d′n = dn − b, d′y = dy − 1 for y ∈ B, and
d′y = dy otherwise. Note that d̃i ≤ d′i ≤ di for all i, with equality on the left for i ∈
B and equality on the right for i ∈ A. Also, the assumption dn = min{d1 , . . . , dn}
implies that d′n = min{d′1 , . . . , d′n} and d

(j)
n = min{d(j)

1 , . . . , d
(j)
n }. We claim that

500 Internet Mathematics

d′ is graphical. Assuming that d′ is graphical, we can then complete the proof as
follows. Note that the vertices in A have the a highest degrees in d′ (excluding n

itself), since this is true for d(j) and in passing from d(j) to d′, these degrees are
increased by 1, while all other degrees aside from that of vertex n are unchanged.
So by the Havel–Hakimi theorem, d′ has a realization containing all of the edges
{n, x}, x ∈ A (since a ≤ d′n = dn − b because j < dn). Deleting these edges yields
a realization G(j) of d(j) containing none of these edges. By definition of B, G(j)

also does not contain any edge {n, y} with y ∈ B. Thus, G(j) is as desired. So it
suffices to prove that d′ is graphical.

To show that d′ is graphical, we verify the Erdős–Gallai conditions. For k = n,
since d is graphical, we have

n∑
i=1

d′i ≤
n∑

i=1

di ≤ n(n − 1).

Assume k < n, and let I ⊆ {1, . . . , n − 1} be an index set for the k largest degrees
of d′. If k ≤ d′n , then k ≤ d′i ≤ di for all i, and we have∑

i∈I

d′i ≤
∑
i∈I

di ≤ k(k − 1) +
∑
i /∈I

min{k, di} = k(k − 1) +
∑
i /∈I

k

= k(k − 1) +
∑
i /∈I

min{k, d′i}.

So assume k > d′n (which implies k > d̃n). Then∑
i∈I

d′i = a′ +
∑
i∈I

d̃i ,

where a′ ≤ a, since d′ and d̃ differ only on A ∪ {n}. Since d̃ is graphical,

a′ +
∑
i∈I

d̃i ≤ a′ + k(k − 1) +
∑
i /∈I

min{k, d̃i}

= a′ + k(k − 1) + d̃n +
∑

i /∈I ,i �=n

min{k, d̃i}

≤ a′ + k(k − 1) + d̃n +
∑

i /∈I ,i �=n

min{k, d′i}

= a′ + k(k − 1) + d̃n − d′n +
∑
i /∈I

min{k, d′i}

≤ k(k − 1) +
∑
i /∈I

min{k, d′i},

where the last inequality follows from a′ + d̃n − d′n = a′ + (dn − j) − (dn − b) =
a′ − a ≤ 0. Hence, d′ is graphical.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 501

Using the above theorem, we can now prove that the algorithm never gets
stuck.

Corollary 5.2. Given a graphical sequence d = (d1 , . . . , dn) as input, Algorithm 1
terminates with a realization of d. Every realization of d occurs with positive
probability.

Proof. We use induction on the number of nonzero entries in the input vector d.
If d = 0, the algorithm terminates immediately with empty edge set, which is
obviously the only realization of the zero vector. Suppose d �= 0 and the claim is
true for all input vectors with fewer nonzero entries than d. Let i be the smallest
index in d with minimal positive degree. There is at least one candidate vertex
j to connect i to, since if {i, j} is an edge in a realization of d, then deleting
this edge shows that the sequence d(1) obtained by subtracting 1 at coordinates
i and j is graphical.

Suppose that the algorithm has chosen edges {i, v1}, . . . , {i, vj} with cor-
responding degree sequences d = d(0) , d(1) , . . . , d(j) , where j ≥ 1 and d

(j)
i =

di − j > 0. Omitting any zeros in d and permuting each sequence to put ver-
tex i at coordinate n, Theorem 5.1 implies that d(j) has a realization Gj using
none of the edges {i, v1}, . . . , {i, vj}. Then Gj has an edge {i, x} with dx = d

(j)
x ,

and {i, x} is an allowable choice for the next edge. Therefore, the algorithm can
always extend the list of degree sequences d = d(0) , . . . , d(j) until the degree at i

is di − j = 0. Let {i, v1}, . . . {i, vj} be the edges selected (with di − j = 0). Note
that if {i, w1}, . . . , {i, wj} are the edges incident with i in a realization of G, then
these edges are chosen with positive probability (as seen by deleting these edges
one by one in any order).

The algorithm then proceeds by picking a minimal positive entry in d(j) (if any
remains). By the inductive hypothesis, running the algorithm on input vector d(j)

terminates with a realization of d(j) . Thus, the algorithm applied to d terminates
with edge set E = {{i, v1}, . . . , {i, vj}} ∪ Ẽ, where Ẽ is an output edge set of the
algorithm applied to d(j) . No edges in Ẽ involve vertex i, so E is a realization
of d. Again by the inductive hypothesis, every realization of d(j) is chosen with
positive probability, and it follows that every realization of d is chosen with
positive probability.

Remark 5.3. Many seemingly similar algorithms frequently get stuck, in the sense
that even though graphicality is maintained by the choices at each stage, one
can reach a sequence from which one would be forced to restart (or allow loops
or multiple edges). For example, the above result is false if the “minimal positive

502 Internet Mathematics

degrees” rule is dropped. For a counterexample, consider the degree sequences
(1, 1, 2, 2, 5, 3), (1, 1, 2, 2, 4, 2), (0, 1, 2, 2, 4, 1) and note that there is no realization
of the sequence (1, 1, 2, 2, 5, 3) containing the edge {1, 6}.

6. Forced Sets of Edges

Theorem 5.1 is also related to the problem of finding a realization of a graph
that requires or forbids certain edges. To make this precise, we introduce the
notion of a forced set of edges.

Definition 6.1. Let d be a graphical degree sequence. A set F of pairs {i, j} with
i, j ∈ {1, . . . , n} is forced for d if for every realization G = (V,E) of d, F ∩ E �= ∅.
If a singleton {e1} is forced for d, we will say that e1 is a forced edge for d.

The one-step case (j = 1) in Theorem 5.1 gives a criterion for an edge to be
forced. Indeed, for this case the assumption about the minimum is not needed.

Proposition 6.2. Let d be a graphical degree sequence and i, j ∈ {1, . . . , n} with i �= j.
Then {i, j} is a forced edge for d if and only if ⊕i,j d is not graphical.

Proof. Suppose that {i, j} is not forced for d. Adding the edge {i, j} to a realization
of d yields a realization of ⊕i,j d. Conversely, suppose that {i, j} is forced for d.
Arguing as in the proof of Theorem 5.1, we see that i and j must have greater
degrees in d than any other vertex. Suppose (for contradiction) that ⊕i,j d is
graphical. Then Havel–Hakimi gives a realization of ⊕i,j d that uses the edge
{i, j}. Deleting this edge gives a realization of d not containing the edge {i, j},
contradicting it being forced for d.

Beyond this one-step case, an additional assumption is needed for analogous
results on forced sets, as shown by the counterexample after the proof of The-
orem 5.1. Much of the proof consisted in showing that the set of all “touched”
vertices is not a forced set for d̃. This immediately yields the following result.

Corollary 6.3. Let d be a graphical degree sequence and let d′ = ⊕k
i ⊕j1 ,...,jk

d for
some distinct vertices i, j1 , . . . , jk . Suppose that d′i = min{d′1 , . . . , d′n}. Then the
set of edges {{i, j1}, . . . , {i, jk}} is forced for d if and only if d′ is not graphical.

We may also want to know whether there is a realization of d containing a
certain list of desired edges. This leads to the following notion.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 503

Definition 6.4. Let d be a graphical degree sequence. A set S of pairs {i, j} with
i, j ∈ {1, . . . , n} is simultaneously allowable for d if d has a realization G with
every element of S an edge in G. If S is a simultaneously allowable singleton, we
call it an allowable edge.

Results on forced sets imply dual results for simultaneously allowable sets and
vice versa, by adding or deleting the appropriate edges from a realization. For
example, Proposition 6.2 implies the following.

Corollary 6.5. Let d be a graphical degree sequence and i, j ∈ {1, . . . , n} with i �= j.
Then {i, j} is an allowable edge for d if and only if 	i,j d is graphical.

Similarly, the dual result to Corollary 6.3 is the following (which is also an
easy consequence of Theorem 5.1).

Corollary 6.6. Let d be a graphical degree sequence and let d̃ = 	k
i 	j1 ,...,jk

d

for some distinct vertices i, j1 , . . . , jk . Suppose that di = min{d1 , . . . , dn}. Then
{{i, j1}, . . . , {i, jk}} is simultaneously allowable for d if and only if d̃ is graphical.

7. Running Time

In this section, we examine the running time of the algorithm. Let d =
(d1 , . . . , dn) be the input. Since no restarts are needed, the algorithm has a fixed,
bounded worst-case running time. Each time a candidate list is generated, the
algorithm performs O(n) easy arithmetic operations (adding or subtracting 1)
and tests for graphicality O(n) times. Each test for graphicality can be done in
O(n) time by Erdős–Gallai, giving a total worst-case O(n2) running time each
time a candidate list is generated (a sorted degree sequence also needs to be
maintained, but the total time needed for this is dominated by the O(n2) time
we already have).

Since a candidate list is generated each time an edge is selected, there are
1
2

∑n
i=1 di candidate lists to generate. Additionally, the algorithm sometimes

needs to locate the smallest index of a minimal nonzero entry, but we are al-
ready assuming that we are maintaining a sorted degree sequence. The overall
worst-case running time is then O(n2 ∑n

i=1 di). For d-regular graphs, this be-
comes a worst case of O(n3d) time. Note that an algorithm that requires restarts
has an unbounded worst-case running time.

504 Internet Mathematics

8. Importance Sampling

The random graphs generated by our algorithm are not distributed uniformly,
but by design it is easy to use importance sampling to estimate expected val-
ues and probabilities for any desired distribution, including uniform. Importance
sampling allows us to reweight samples from a distribution available to us, called
the trial distribution, to obtain estimates with respect to the desired target dis-
tribution. Choosing a good trial distribution is often a difficult problem; one
approach to this, sequential importance sampling, involves building up the trial
distribution recursively as a product, with each factor conditioned on the previ-
ous choices.

Section 8.1 reviews some previous applications of importance sampling and
explains how they are related to the current work. Section 8.2 then shows how
sequential importance sampling works in the context of random graphs produced
by our algorithm, and Section 8.3 discusses some practical and theoretical results
on the variances of such estimators, and associated open problems.

For general background on Monte Carlo computations and importance
sampling, we recommend [Hammersley and Handscomb 65, Liu 01, Fishman 66].
Sequential importance sampling is developed in [Liu and Chen 98, Doucet
et al. 01]. Important variations that could be coupled with the present algo-
rithms include use of control variates [Owen and Zhou 00] to bound the variance
and adaptive importance sampling as in [Rubinstein and Kroese 04].

8.1. Some Previous Applications

Sequential importance sampling was used in [Snijders 91] to sample from the set
of all zero–one tables with given row and column sums. The table was built up
from left to right, one column at a time; this algorithm could get stuck midway
through, forcing it to backtrack or restart.

In [Chen et al. 05], the authors introduced the crucial idea of using a combi-
natorial test to permit only partial fillings that can be completed to full tables.
Using this idea, they gave efficient importance-sampling algorithms for zero–one
tables and (two-way) contingency tables. For zero–one tables, the combinatorial
test is the Gale–Ryser theorem. For contingency tables, the test is simpler: the
sum of the row sums and the sum of the column sums must agree. In [Admiraal
and Handcock 08], the authors give simulations and software for this, as a tool
for generating bipartite graphs; here we are concerned with general graphs.

For multiway contingency tables, a sequential importance-sampling algorithm
is developed in [Chen et al. 06]. A completely different set of mathematical tools
turns out to be useful in this case, including Gröbner bases, Markov bases, and

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 505

toric ideals. [Chen 07] gives importance-sampling algorithms for tables in which
certain positions are constrained to be 0. In such problems, there is an ap-
pealing interplay between combinatorial and algebraic theorems and importance
sampling.

Our graph algorithm produces symmetric zero–one tables with trace 0, where
the combinatorial test is the Erdős–Gallai characterization. Rather than simpli-
fying the problem, here symmetry completely changes the problem, since it is an
additional constraint, requiring different characterizations and a different scheme
for filling in the table. For both zero–one tables and graphs, refinements to the
combinatorial theorems were needed to ensure that partially filled-in tables could
be completed and sequential probabilities computed.

These problems fall under a general program: how can one convert a charac-
terization of a combinatorial structure into an efficient generating algorithm? A
refinement of the characterization is often needed, for use with testing whether
a partially determined structure can be completed. [Blitzstein 06] develops more
algorithms of this nature, including algorithms for generating connected graphs,
digraphs, and tournaments.

8.2. Importance Sampling of Graphs

In applying importance sampling with our algorithm, some care is needed be-
cause it is possible to generate the same graph in different orders, with differ-
ent corresponding probabilities. For example, consider the graphical sequence
d = (4, 3, 2, 3, 2). The graph with edges

{1, 3}, {2, 3}, {2, 4}, {1, 2}, {1, 5}, {1, 4}, {4, 5}
can be generated by the algorithm in any of eight orders. For example, there is
the order just given, and there is the order

{2, 3}, {1, 3}, {2, 4}, {1, 2}, {1, 4}, {1, 5}, {4, 5}.
The probability of the former is 1/20, and that of the latter is 3/40, even though
the two sequences correspond to the same graph. This makes it more difficult
to directly compute the probability of generating a specific graph, but as shown
below, importance sampling can still be used with appropriate weights.

Fix a graphical sequence d of length n as input to the algorithm. We first
introduce some notation to clearly distinguish between a graph and a list of
edges.

Definition 8.1. Let Gn,d be the set of all realizations of d and let Yn,d be the set
of all possible sequences of edges output by the algorithm. For any sequence

506 Internet Mathematics

Y ∈ Yn,d of edges, let Graph(Y) be the corresponding graph in Gn,d (with
the listed edges and vertex set {1, . . . , n}). We call Y, Y ′ ∈ Yn,d equivalent if
Graph(Y ′) = Graph(Y). Let c(Y) be the number of Y ′ ∈ Yn,d with Graph(Y ′) =
Graph(Y).

The equivalence relation defined above partitions Yn,d into equivalence classes.
There is an obvious one-to-one correspondence between the equivalence classes
and Gn,d , and the size of the class of Y is c(Y). Note that c(Y ′) = c(Y) if Y ′ is
equivalent to Y . The number c(Y) is easy to compute as a product of factorials:

Proposition 8.2. Let Y ∈ Yn,d and let i1 , i2 , . . . , im be the vertices chosen in the
iterations of step 3 of the algorithm in an instance in which Y is output (so the
algorithm gives i1 edges until its degree goes to 0, and then does the same for i2 ,
etc.). Let a1 , . . . , am be the degrees of i1 , . . . , im respectively, at the time when
each was chosen. Then

c(Y) =
m∏

k=1

ak ! .

Proof. Let Y ′ be equivalent to Y . Note from step 3 of the algorithm that Y ′ has the
same vertex choices i1 , i2 , . . . , im as Y . We can decompose Y and Y ′ into blocks
corresponding to i1 , . . . , im . Within each block, Y ′ and Y must have the same
set of edges, possibly in a permuted order. Conversely, Theorem 5.1 implies that
any permutation that independently permutes the edges within each block of
the sequence Y yields a sequence Y ′′ in Yn,d . Clearly, any such Y ′′ is equivalent
to Y .

A main goal in designing our algorithm, in addition to not letting it get stuck,
is to have a simple formula for c(Y). In many seemingly similar algorithms, it is
difficult to find an analogue of the above formula for c(Y), making it much more
difficult to use importance sampling efficiently. Before explaining how importance
sampling works in this context, a little more notation is needed.

Notation. 8.3. For Y ∈ Yn,d , write σ(Y) for the probability that the algorithm
produces the sequence Y . Given a function f on Gn,d , write f̂ for the induced
function on the larger space Yn,d , with f̂(Y) = f(Graph(Y)).

For Y the output of a run of the algorithm, σ(Y) can easily be computed se-
quentially along the way. Each time the algorithm chooses an edge, have it record
the probability with which it was chosen (conditioned on all of the previously

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 507

chosen edges), namely, its degree divided by the sum of the degrees of all can-
didates at that stage. Multiplying these probabilities gives the probability σ(Y)
of the algorithm producing Y .

We now show how to perform importance sampling with the algorithm, ad-
justing for having a proposal distribution σ distributed on Yn,d rather than
on Gn,d .

Proposition 8.4. Let π be a probability distribution on Gn,d and let G be a random
graph drawn according to π. Let Y be a sequence of edges distributed according
to σ. Then

E

(
π̂(Y)

c(Y)σ(Y)
f̂(Y)

)
= Ef(G).

In particular, for Y1 , . . . , YN the output sequences of N independent runs of the
algorithm,

µ̂ =
1
N

N∑
i=1

π̂(Yi)
c(Yi)σ(Yi)

f̂(Yi)

is an unbiased estimator of Ef(G).

Proof. Let Y be an output of the algorithm. We can compute a sum over Yn,d by
first summing within each equivalence class and then summing over all equiva-
lence classes:

E

(
π̂(Y)

c(Y)σ(Y)
f̂(Y)

)
=
∑

y∈Yn , d

f̂(y)π̂(y)
c(y)σ(y)

σ(y) =
∑

y∈Yn , d

f̂(y)π̂(y)
c(y)

=
∑

G∈Gn , d

∑
y :Graph(y)=G

f̂(y)π̂(y)
c(y)

=
∑

G∈Gn , d

f(G)π(G)

= Ef(G),

where the second-to-last equality holds because on the set C(G) =
{y : Graph(y) = G}, we have f̂(y) = f(G), π̂(y) = π(G), and c(y) = |C(G)|.

Taking π to be uniform and f to be a constant function allows us to estimate
the number of graphs with degree sequence d; this is explored in the next section.
The ratios

Wi =
π̂(Yi)

c(Yi)σ(Yi)

are called importance weights. A crucial feature of our algorithm is that the
quantity c(Yi)σ(Yi) can easily be computed on the fly, as described above. By

508 Internet Mathematics

Figure 3. Histogram of 6000 importance weights for the Chesapeake food web.

taking f to be a constant function, we see that EWi = 1, so the average sum of
the importance weights in µ̂ is N . Another estimator of Ef(G) is then

µ̃ =
1∑N

i=1 Wi

N∑
i=1

Wif̂(Yi).

This estimator is biased but has the crucial advantage that the importance
weights need be known only up to a constant. Moreover, the variance is typ-
ically lower for this estimator, and the law of large numbers ensures consistency.

A major factor in the performance of importance sampling is how much vari-
ation there is in the importance weights. Let π be the uniform distribution on
Gn,d . We plot in Figure 3 a histogram of importance weights for 6000 trials with
d the degree sequence of the food web of Figure 1. The weights shown are scaled
by dividing by 1052 and omitting the constant π̂(Y). The weights vary greatly
from a minimum of 2.9 × 1052 to a maximum of 2.9 × 1058 , but most are between
1.2 × 1056 and 1.9 × 1057 . The ratio of maximum to median is 52, making the
largest few weights influential but not completely dominant.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 509

8.3. What about the Variance?

Obtaining good bounds on the variances of importance-sampling estimators is
notoriously difficult, and there is often a wide gulf between theory and practice.
Tantalizingly, most examples for which good bounds are currently available are
simple or extreme, and far from any typical-looking data one would encounter.
In some cases, when the proposal distribution is not good enough, the empirical
estimates of the variance are misleading; this is analogous to MCMC sometimes
getting stuck in a local mode, and not “knowing” about the rest of the space in
any reasonable amount of time. See [Bassetti and Diaconis 05] for some examples
explicitly comparing the efficiencies of importance sampling and MCMC.

As an extreme example, consider d of the form d = (1, . . . , 1, k) with k ≥ 2,
which is the graph analogue of an example in the context of the algorithm in
[Chen et al. 05] for generating zero–one tables with given row and column sums.
[Bezáková et al. 06] shows that in certain examples with all but one row sum
and all but one column sum equal to 1, exponentially many trials are needed.
[Blitzstein 06] gives explicit variance calculations for d = (1, . . . , 1, k) with l + 2k

vertices of degree 1. When l = 1 and k = 100, the relative standard deviation is
2.3 × 1012, so more than 1024 graphs would be needed to obtain an acceptably
low standard deviation. Such behavior does not seem characteristic of cases in
which the degrees do not behave as wildly, but rigorous bounds are elusive except
in simple cases.

In [Bayati et al. 10], the authors analyze a closely related example for graphs
with several

√
n terms in place of the single k, showing that for the Steger–

Wormald algorithm the resulting distribution is extremely far from uniform.
They then improve on the Steger–Wormald algorithm by reweighting the edge
selection process, and use concentration inequalities to show that their algorithm
gives approximately uniform graphs when the maximum degree is O(m1/4−ε)
(for ε > 0, with m the number of edges). Their algorithm does not use impor-
tance sampling directly, however, though the improved weights suggest possible
improvements that can be made in designing a good proposal distribution for
importance sampling.

[Blanchet 09] introduces a framework for converting questions about the ef-
ficiency of importance-sampling algorithms to questions about rare-event sim-
ulation. In particular, for a form of the contingency-table algorithm discussed
earlier, Blanchet derives a bound that essentially states that asymptotically,
the estimates are accurate with high probability under the conditions that
maxj cj = o(s1/2),

∑
j c2

j = O(s), and the rj are bounded, where rj and cj are
row and column sums (respectively) and s =

∑
j cj . These constraints are quite

restrictive, and it is not yet clear to what extent they can be relaxed, nor whether

510 Internet Mathematics

his framework can be extended to give bounds for algorithms using characteriza-
tions such as Gale–Ryser and Erdős–Gallai. Much further work is needed both
for importance sampling and MCMC approaches to such problems, to narrow the
gulf between simulation results and theoretical bounds on variances and mixing
times respectively, and to give useful guidance as to which method is likely to
be more reliable and efficient in a given applied problem. Of course, one way to
investigate the questions about the distribution of the estimator is to try it out
on a variety of examples where the exact answer is available. We begin this job
in the following section.

9. Estimating the Number of Graphs

To estimate the number |Gn,d | of realizations of d, let π be uniform on Gn,d and
take f to be the constant function f(G) = |Gn,d |. By Proposition 8.4,

E

(
1

c(Y)σ(Y)

)
= |Gn,d |.

Asymptotic formulas for |Gn,d | are available for regular and some nonregular
degree sequences (see [Bender and Canfield 78, McKay and Wormald 90, McKay
and Wormald 91, Barvinok and Hartigan 10]), but there are few nonasymptotic
closed-form expressions.

For the food web example of Figure 1, the estimated size of Gn,d was (1.51 ±
0.03) × 1057 using 6000 trials. The asymptotic formulas are not of much use in
such an example, with a fixed n of moderate size (here n = 33).

As an application and test of this method, we estimated the number of labeled
3-regular graphs on n vertices. The exact values for all even n ≤ 24 are available
as Sequence A002829 in Sloane’s wonderful “On-Line Encyclopedia of Integer
Sequences” [Sloane 05], and can be computed in general with a messy recurrence
in [Goulden and Jackson 04].

For n = 4, there is only one labeled 3-regular graph on n vertices, the complete
graph K4 . Comfortingly, the algorithm does give 1 as its estimate for this case.
In general, a degree sequence with exactly one realization is called a threshold
sequence (see [Mahadev and Peled 95]), and it is easy to see that the algorithm
gives 1 as the estimate for any threshold sequence.

Table 1 gives the estimators µ̂ obtained by the trials for all even n between
6 and 24, along with the number of trials, the correct value µ, and the percent
error. The number after each ± indicates the estimated standard error.

For each of these degree sequences, the coefficient of variation (ratio of stan-
dard deviation to mean) was approximately 0.4, ranging between 0.39 and 0.43.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 511

n runs µ̂ µ % error

6 500 71.1 ± 1.2 70 1.57
8 500 18964 ± 365 19355 2.06

10 500 (1.126 ± 0.021) × 107 1.118 × 107 0.72
12 500 (1.153 ± 0.022) × 1010 1.156 × 1010 0.26
14 500 (1.914 ± 0.036) × 1013 1.951 × 1013 1.93
16 500 (5.122 ± 0.093) × 1016 5.026 × 1016 1.91
18 500 (1.893 ± 0.034) × 1020 1.877 × 1020 0.85
20 500 (9.674 ± 0.17) × 1023 9.763 × 1023 0.92
22 500 (6.842 ± 0.12) × 1027 6.840 × 1027 0.029
24 500 (6.411 ± 0.11) × 1031 6.287 × 1031 1.97

Table 1. Estimators µ̂ obtained by the trials for all even n between 6 and 24,
along with the number of trials, the correct value µ, and the percent error. The
number after each ± indicates the estimated standard error.

A measure of the efficiency of an importance sampling scheme is the effective
sample size, as given in [Kong et al. 94]. The effective sample size approximates
the number of i.i.d. samples from the target distribution required to obtain the
same standard error as the importance samples. The estimated effective sam-
ple sizes for these examples, computed using the coefficients of variation, range
between 422 and 434 for 500 runs of the algorithm.

As a comparison between choosing candidates uniformly and choosing candi-
dates with probability proportional to their degrees, we generated 50 estimators
from each algorithm, with each based on 100 runs of the algorithm applied to the
3-regular degree sequence with n = 10. The true value is 11180820 ≈ 1.118 × 107.
The mean of the estimators for uniform candidates was 1.137 × 107 (an error
of 1.7%), while that of the degree-based selection was 1.121 × 107 (an error
of 0.25%).

For a highly nonregular example, we tested the algorithm with the graphi-
cal degree sequence d = (5, 6, 1, . . . , 1) with eleven 1’s. To count the number of
labeled graphs with this degree sequence, note that there are

(11
5

)
= 462 such

graphs with vertex 1 not joined to vertex 2 by an edge (these graphs look like
two separate stars), and there are

(11
4

)(7
5

)
= 6930 such graphs with an edge be-

tween vertices 1 and 2 (these look like two joined stars with an isolated edge left
over). Thus, the total number of realizations of d is 7392.

Running 500 trials of the algorithm gave the estimate 7176 ± 587, an error of
3%. The algorithm with uniform selection of candidate gave the terrible estimate

512 Internet Mathematics

of 3702 with 500 trials, indicating the importance of choosing a good distribution
on the candidate vertices.

10. An Exponential Family Model

For a labeled graph G with n vertices, let di(G) be the degree of vertex i. In
the preceding sections, we have kept di fixed. In this section, we allow di to
be random by putting an exponential family model on labeled graphs with n

vertices. In this model, the di are used as energies or sufficient statistics.
Formally, define a probability measure Pβ on the space of all graphs on n

vertices by

Pβ (G) = Z−1 exp

(
−

n∑
i=1

βidi(G)

)
,

where Z is a normalizing constant (depending on β). The real parameters
β1 , . . . , βn are chosen to achieve given expected degrees. This model appears
explicitly in [Park and Newman 04] using the tools and language of statistical
mechanics.

Such models are standard fare in statistics and statistical mechanics. They
are extremely widely used in social network analysis (where they are called p∗

or ERGMs (exponential random graph models)), having been introduced in this
context in [Holland and Leinhardt 81] in the social network context (see also
[Anderson et al. 99, Frank and Strauss 86, Newman 03, Robins et al. 07]) as well
as [Snijders 02, Snijders et al. 06, Strauss 86]). These models are also increasingly
being used in economics (see the recent book [Jackson 08]).

[Holland and Leinhardt 81] gives iterative algorithms for the maximum like-
lihood estimators, and [Snijders 02] discusses MCMC methods for such models.
For the degree-based models considered here, [Chatterjee et al. 11] gives a prov-
ably efficient iterative algorithm for computing the MLE of the βi , and uses this
to study graph limits.

One standard motivation for using the probability measure Pβ is that this
model gives the maximum entropy distribution on graphs with a given ex-
pected degree sequence (see [Lauritzen 88] for further discussion of this).
In contrast to most other exponential family graph models, the normaliz-
ing constant is available here in closed form. Furthermore, there is an easy
method of sampling exactly from Pβ , as shown by the following easily checked
result.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 513

Lemma 10.1. Fix real parameters β1 , . . . , βn . Let Yij be independent binary random
variables for 1 ≤ i < j ≤ n, with

P (Yij = 1) =
e−(βi +βj)

1 + e−(βi +βj) = 1 − P (Yij = 0).

Form a random graph G by creating an edge between i and j if and only if Yij = 1.
Then G is distributed according to Pβ , with

Z =
∏

1≤i<j≤n

(
1 + e−(βi +βj)).

Note that putting βi = 0 results in the uniform distribution on graphs. Also,
it follows from Lemma 10.1 that by choosing βi = β for all i, for

β = −1
2

log
(

p

1 − p

)
,

we recover the classical Erdős–Rényi model.
Another model with given expected degrees and edges chosen independently

is given in [Chung and Lu 2002b, Chung and Lu 2002a], where an edge between
i and j is created with probability wiwj/

∑
k wk (including the case i = j), with

wi the desired expected degree of vertex i and w2
i <

∑
k wk for all i. This has

the advantage that it is immediate that the expected degree of vertex i is wi ,
without any parameter estimation required. The model we are considering here
makes it more difficult to choose the βi , but it yields the maximum entropy
distribution, makes the degrees sufficient statistics, and does not require the use
of loops. If loops are desired in the exponential model, they may easily be added
by allowing i = j in Lemma 10.1. We would like to understand better the precise
relationship between the distribution obtained from the Chung and Lu model
and the maximum entropy distribution of the exponential family model.

Remark 10.2. The formula for the normalizing constant is equivalent to the identity

∏
1≤i<j≤n

(1 + xixj) =
∑
G

n∏
i=1

x
di (G)
i ,

where the sum on the right is over all graphs G on vertices 1, . . . , n. This iden-
tity is closely related to the following symmetric function identity (which is a
consequence of Weyl’s identity for root systems; see [Macdonald 95, Section I.5,
Exercise 9]): ∏

1≤i<j≤n

(1 + xixj) =
∑

λ

sλ ,

514 Internet Mathematics

where sλ is the Schur function corresponding to a partition λ, and the sum on
the right ranges over all partitions λ with Frobenius notation of the form (α1 −
1 · · ·αr − 1 | α1 · · ·αr), with α1 ≤ n − 1. We hope to find (and use) a stochastic
interpretation for this Schur function expansion.

The model given by Pβ is quite rich; it has n real parameters. Our algorithm
can be applied to assess the adequacy of using degrees as sufficient statistics (and
not having higher-order terms such as triangle counts). In some problems, a larger
exponential family is used (e.g., with parameters corresponding to the number
of triangles or other patterns of interest), and the βj are considered nuisance
parameters. A natural approach to eliminating these nuisance parameters is to
condition on the degrees, and our algorithm can be used to do this conditional
inference.

Given a graph G, we may test adequacy of the Pβ model as follows, us-
ing the fact that the conditional distribution of a graph G given its degrees
d1(G), . . . , dn (G) is uniform over all graphs with this degree sequence. First
choose any test statistic T (such as the number of triangles, the diameter, the
number of components, or the size of the largest component), and compute T (G).
Then generate a large number of uniform graphs with the same degrees as G,
and compare the observed value of T (G) against the distribution of T obtained
from the sampled random graphs. A closely related approach to testing such a
model is to embed it in a larger family and then test whether the new param-
eters are 0. Indeed, it is shown in [Lehmann and Romano 05, Section 4.4] that
our proposed test is optimal (UMP unbiased) in the exponential family model
extended by adding T (G) to the sufficient statistic (d1(G), . . . , dn (G)).

As an example, we return now to the Chesapeake Bay food web shown in
Figure 1. We represent this as an undirected graph for this example, though it is
clearly more natural to use a directed graph: it matters whether x eats y or y eats
x (especially to x and y). The undirected analysis still reveals information about
the connectivity and common substructures in the food web, while analogous
algorithms for directed graphs can also be developed (see [Blitzstein 06] for
related characterizations and associated algorithms). The blue crab, which is
cannibalistic, is represented by vertex 19; we have omitted the loop at vertex 19,
not for any moral reason but because we are considering simple graphs.

The graph has 33 vertices, including at least one of every degree from 1 to 10,
as illustrated in Figure 4; the degrees vary widely (and do not resemble a power
law).

As a first test statistic, we computed the clustering coefficient of each graph,
which is a measure of transitivity. There are a few different definitions; here we
will use the original definition of [Watts and Strogatz 98]: for each vertex v of

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 515

Figure 4. Frequencies of degrees in the Chesapeake food web.

degree dv ≥ 2, let Cv be the proportion of edges present between neighbors of v

out of the
(
dv

2

)
possible edges. Put Cv = 0 if dv < 2. The clustering coefficient of

a graph is then defined to be the average of Cv over all vertices of the graph.
Using the estimator µ̃ of Section 8.2, the estimated average clustering coeffi-

cient for a graph with the same degrees as the food web is 0.157. A histogram of
the estimated distribution is shown in Figure 5. The actual clustering coefficient
is 0.176, slightly above the mean. Thus, the clustering coefficient is consistent
with what the model predicts.

In an attempt to explain and quantify the observation that the real food web is
more compact and hierarchical than the vast majority of the random graphs, we
examined cycles in the graphs. Specifically, we counted the number of k-cycles
in the real food web and the first 1000 random graphs, for 3 ≤ k ≤ 6. The cycles

Figure 5. Histogram of clustering coefficients; the real food web value is 0.176.

516 Internet Mathematics

are treated as unoriented subgraphs of the graph, i.e., a cycle x → y → z → x is
considered the same cycle as y → z → x → y and x → z → y → x.

The enumeration was done by recursively counting the number of simple paths
from v to v, summing over all v, and dividing by 2k (since each cycle can be
started at any of its k vertices and traversed in either direction). Histograms of
the numbers of k-cycles are shown in Figure 6.

For 3-cycles (triangles), the actual value of 18 is extremely close to the esti-
mated mean, which is 19. This is not surprising, especially since the clustering
coefficient is closely related to the number of triangles. For 4-cycles, though, the
actual value of 119 is nearly double the estimated mean of 60. In fact, the number
of 4-cycles in the actual food web is larger than the number of 4-cycles in any
of the 1000 random graphs tested! Explaining this of course requires looking at
the directed graph, but the undirected graph was very helpful in detecting this
phenomenon in the first place. Inspecting the corresponding directed subgraphs,
two forms are prevalent: (1) x and y both eat z and w and (2) x eats y and z,
while y and z eat w. Interestingly, it is observed in [Milo et al. 02] that pattern
(2) is extremely common in all seven of the food webs they study. They call a
pattern that occurs much more often in a real network than in corresponding
random networks a “network motif” (see also [Itzkovitz et al. 03]). Finding net-
work motifs can reveal structure in the network that would be missed by taking
a highly degree-centric point of view.

In generating random graphs for comparison purposes, Milo et al. use two
algorithms. First, they use a form of the switchings Markov chain discussed in
Section 3.2 (adapted for directed graphs), which is not known to be rapidly
mixing for general degree sequences. Second, they use a variant of the pairing
model, modified from an algorithm in [Newman 01]. Their algorithm can get
stuck and has nonuniform output, as pointed out in [King 04]. Our algorithm
also has a nonuniform output distribution, but never gets stuck and makes it
easy to estimate with respect to the uniform distribution.

Returning to the cycle results, for 5-cycles the actual value is 153, which is
significantly lower than the estimated mean of 191. It is at the fifth percentile
of the estimated distribution. For 6-cycles, the actual value of 582 is close to the
estimated mean of 595. A biological interpretation would be welcome for why
4-cycles are extremely common and 5-cycles are rare, while 6-cycles are close to
the middle of the distribution.

10.0.1. A Note on Software. Graphs were drawn using Graphviz [Ellson et al. 03].
The implementation of the algorithm and importance-sampling computations
presented here were done using R [R Core Team 05] and Mathematica

Fi
gu

re
6.

H
is

to
gr

am
s

of
k
-c

yc
le

co
un

ts
;
th

e
re

al
fo

od
w

eb
ha

s
18

,
11

9,
15

3,
58

2,
re

sp
ec

ti
ve

ly
.

517

518 Internet Mathematics

[Wolfram Research 01] on a computer running Mac OS X. Code implementing
the algorithm is available on the first author’s web page or by e-mail request.

Acknowledgments. We thank Jose Blanchet, Sourav Chatterjee, Alex Gamburd, Susan
Holmes, Brendan McKay, Amin Saberi, Richard Stanley, Patrick Wolfe, and Nick
Wormald for their helpful suggestions and references.

References

[Admiraal and Handcock 08] R. Admiraal and M. S. Handcock. “Networksis: A Package
to Simulate Bipartite Graphs with Fixed Marginals through Sequential Importance
Sampling.” Journal of Statistical Software 24:8 (2008), 1–21.

[Anderson et al. 99] C. Anderson, S. Wasserman, and B. Crouch. “A p∗ Primer: Logit
Models for Social Networks.” Social Networks 21 (1999), 37–66.

[Arratia and Liggett 05] Richard Arratia and Thomas M. Liggett. “How Likely Is
an I.I.D. Degree Sequence to Be Graphical?” Ann. Appl. Probab. 15:1B (2005),
652–670.

[Baird and Ulanowicz 89] Daniel Baird and Robert E. Ulanowicz. “The Seasonal Dy-
namics of the Chesapeake Bay Ecosystem.” Ecological Monographs 59 (1989), 329–
364.

[Barvinok and Hartigan 10] A. Barvinok and J. A. Hartigan. “The Number of Graphs
and a Random Graph with a Given Degree Sequence.” Preprint, 2010.

[Bassetti and Diaconis 05] Frederico Bassetti and Persi Diaconis. “Examples Compar-
ing Importance Sampling and the Metropolis Algorithm.” Illinois Journal of Math-
ematics 50, 2006.

[Bayati et al. 10] M. Bayati, J. H. Kim, and A. Saberi. “A Sequential Algorithm for
Generating Random Graphs.” Algorithmica 58 (2010), 860–910.

[Beichl and Cloteaux 08] I. Beichl and B. Cloteaux. “Measuring the Effectiveness
of the s-Metric to Produce Better Network Models.” In Proceedings of the 40th
Conference on Winter Simulation, Winter Simulation Conference, pp. 1020–1028,
2008.

[Bender and Canfield 78] Edward A. Bender and E. Rodney Canfield. “The Asymptotic
Number of Labeled Graphs with Given Degree Sequences.” J. Combinatorial Theory
Ser. A, 24:3 (1978), 296–307.

[Bezáková et al. 06] Ivona Bezáková, Alistair Sinclair, Daniel Štefankovič, and Eric
Vigoda. “Analysis of Sequential Importance Sampling for Contingency Tables.”
Preprint, 2006.

[Blanchet 09] J. H. Blanchet. “Efficient Importance Sampling for Binary Contingency
Tables.” Annals of Applied Probability 19:3 (2009), 949–982.

[Blitzstein 06] Joseph K. Blitzstein. “Building Random Objects Sequentially: From
Characterization to Algorithm.” PhD thesis, Stanford University, 2006.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 519

[Bollobás 80] Béla Bollobás. “A Probabilistic Proof of an Asymptotic Formula for the
Number of Labelled Regular Graphs.” European J. Combin. 1:4 (1980), 311–316.

[Chatterjee et al. 11] S. Chatterjee, P. Diaconis, and A. Sly. “Random Graphs with a
Given Degree Sequence.” To appear in Annals of Applied Probability, 2011.

[Chen 07] Yuguo Chen. “Conditional Inference on Tables with Structural Zeros.” Jour-
nal of Computational and Graphical Statistics 16:2 (2007), 445–467.

[Chen et al. 05] Y. Chen, P. Diaconis, S. Holmes, and J. S. Liu. “Sequential Monte
Carlo Methods for Statistical Analysis of Tables.” Journal of the American Statistical
Association 100 (2005), 109–120.

[Chen et al. 06] Y. Chen, I. H. Dinwoodie, and S. Sullivant. “Sequential Importance
Sampling for Multiway Tables.” Annals of Statistics 34:11 (2006), 523–545.

[Chung and Lu 2002a] Fan Chung and Linyuan Lu. “The Average Distances in Random
Graphs with Given Expected Degrees.” Proc. Natl. Acad. Sci. USA 99:25 (2002)
(electronic), 15879–15882.

[Chung and Lu 2002b] Fan Chung and Linyuan Lu. “Connected Components in Ran-
dom Graphs with Given Expected Degree Sequences.” Ann. Comb. 6:2 (2002), 125–
145.

[Cooper et al. 07] C. Cooper, M. Dyer, and C. Greenhill. “Sampling Regular Graphs
and a Peer-to-Peer Network.” Combinatorics, Probability and Computing 16 (2007),
557–594.

[Diaconis and Gangolli 95] Persi Diaconis and Anil Gangolli. “Rectangular Arrays with
Fixed Margins.” In Discrete Probability and Algorithms (Minneapolis, MN, 1993),
IMA Vol. Math. Appl. 72, pp. 15–41. New York: Springer, 1995.

[Diaconis and Sturmfels 98] Persi Diaconis and Bernd Sturmfels. “Algebraic Algo-
rithms for Sampling from Conditional Distributions.” Ann. Statist. 26:11 (1998),
363–397.

[Doucet et al. 01] Arnaud Doucet, Nando de Freitas, and Neil Gordon. “An Introduc-
tion to Sequential Monte Carlo Methods.” In Sequential Monte Carlo Methods in
Practice, Stat. Eng. Inf. Sci., pp. 3–14. New York: Springer, 2001.

[Ellson et al. 03] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
“Graphviz and Dynagraph: Static and Dynamic Graph Drawing Tools.” In Graph
Drawing Software, edited by M. Junger and P. Mutzel, pp. 127–148. Berlin: Springer,
2003.

[Erdős and Gallai 60] P. Erdős and T. Gallai. “Graphen mit Punkten vorgeschriebenen
Grades.” Mat. Lapok 11 (1960), 264–274.

[Fishman 66] George S. Fishman. Monte Carlo: Concepts, Algorithms, and Applica-
tions, Springer Series in Operations Research. New York: Springer, 1996.

[Frank and Strauss 86] Ove Frank and David Strauss. “Markov Graphs.” J. Amer.
Statist. Assoc. 81:395 (1986), 832–842.

[Goulden and Jackson 04] Ian P. Goulden and David M. Jackson. Combinatorial Enu-
meration. Mineola, NY: Dover, 2004.

520 Internet Mathematics

[Hakimi 62] S. L. Hakimi. “On Realizability of a Set of Integers as Degrees of
the Vertices of a Linear Graph I.” J. Soc. Indust. Appl. Math. 10 (1962), 496–
506.

[Hammersley and Handscomb 65] J. M. Hammersley and D. C. Handscomb. Monte
Carlo Methods. London: Methuen & Co. Ltd., 1965.

[Havel 55] V. Havel. “A Remark on the Existence of Finite Graphs.” C̆asopis Pĕst.
Mat. 80 (1955) 477–480.

[Holland and Leinhardt 81] Paul W. Holland and Samuel Leinhardt. “An Exponential
Family of Probability Distributions for Directed Graphs.” J. Amer. Statist. Assoc.
76:373 (1981), 33–65.

[Itzkovitz et al. 03] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon. “Subgraphs
in Random Networks.” Phys. Rev. E (3) 68:2 (2003), 026127, 8.

[Jackson 08] M. O. Jackson. Social and Economic Networks. Princeton: Princeton Uni-
versity Press, 2008.

[Jerrum and Sinclair 90] Mark Jerrum and Alistair Sinclair. “Fast Uniform Generation
of Regular Graphs.” Theoret. Comput. Sci. 73:1 (1990), 91–100.

[Kim and Vu 04] J. H. Kim and V. H. Vu. “Sandwiching Random Graphs: Universality
between Random Graph Models.” Adv. Math. 188:2 (2004), 444–469.

[King 04] Oliver D. King. “Comment on ‘Subgraphs in Random Networks.’ ” Phys. Rev.
E, 70:5 (2004), 058101, 3.

[Kong et al. 94] A. Kong, J. S. Liu, and W. H. Wong. “Sequential Imputations and
Bayesian Missing Data Problems.” Journal of the American Statistical Association
89:425 (1994), 278–288.

[Lauritzen 88] Steffen L. Lauritzen. Extremal Families and Systems of Sufficient Statis-
tics, Lecture Notes in Statistics 49. New York: Springer, 1988.

[Lehmann and Romano 05] E. L. Lehmann and Joseph P. Romano. Testing Statistical
Hypotheses, Springer Texts in Statistics. New York: Springer, 2005.

[Liu 01] Jun S. Liu. Monte Carlo Strategies in Scientific Computing, Springer Series in
Statistics. New York: Springer, 2001.

[Liu and Chen 98] Jun S. Liu and Rong Chen. “Sequential Monte Carlo Methods for
Dynamic Systems.” J. Amer. Statist. Assoc. 93:443 (1998), 1032–1044.

[Macdonald 95] I. G. Macdonald. Symmetric Functions and Hall Polynomials, Oxford
Mathematical Monographs. New York: Oxford University Press, 1995.

[Mahadev and Peled 95] N. V. R. Mahadev and U. N. Peled. Threshold Graphs and
Related Topics, Annals of Discrete Mathematics 56. Amsterdam: North-Holland,
1995.

[McKay and Wormald 90] Brendan D. McKay and Nicholas C. Wormald. “Asymptotic
Enumeration by Degree Sequence of Graphs of High Degree.” European J. Combin.
11:6 (1990), 565–580.

[McKay and Wormald 91] Brendan D. McKay and Nicholas C. Wormald. “Asymptotic
Enumeration by Degree Sequence of Graphs with Degrees o(n1/2).” Combinatorica
11:4 (1991), 369–382.

Blitzstein and Diaconis: Importance Sampling for Graphs with Given Degrees 521

[Milo et al. 02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon. “Network Motifs: Simple Building Blocks of Complex Networks.” Science
298 (2002), 824–827.

[Newman 01] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. “Random Graphs
with Arbitrary Degree Distributions and Their Applications.” Physical Review E 64
(2001), 026118.

[Newman 03] M. E. J. Newman. “The Structure and Function of Complex Networks.”
SIAM Review 45 (2003), 167–256.

[Olding and Wolfe 09] B. P. Olding and P. J. Wolfe. “Inference for Graphs and Net-
works: Extending Classical Tools to Modern Data.” Preprint, 2009.

[Owen and Zhou 00] Art Owen and Yi Zhou. “Safe and Effective Importance Sam-
pling.” Journal of the American Statistical Association 95:449 (2000), 135–143.

[Park and Newman 04] Juyong Park and M. E. J. Newman. “Statistical Mechanics of
Networks.” Phys. Rev. E (3) 70:6 (2004), 066117, 13.

[R Core Team 05] R Development Core Team. R: A Language and Environment for
Statistical Computing. Vienna: R Foundation for Statistical Computing, 2005.

[Robins et al. 07] G. Robins, T. Snijders, P. Wang, M. Handcock, and P. Pattison. “Re-
cent Developments in Exponential Random Graph (P*) Models for Social Networks.”
Social Networks 29:2 (2007), 92–215.

[Rubinstein and Kroese 04] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-
Entropy Method, Information Science and Statistics. New York: Springer, 2004.

[Sloane 05] N. J. A. Sloane. “The On-Line Encyclopedia of Integer Sequences.” Avail-
able online (http://www.research.att.com/∼njas/sequences/), 2005.

[Snijders et al. 06] T. Snijders, P. Pattison, G. Robins, and M. Handcock. “New Specifi-
cations for Exponential Random Graph Models.” Sociological Methodology 1 (2006),
99–154.

[Snijders 91] Tom A. B. Snijders. “Enumeration and Simulation Methods for 0–1 Ma-
trices with Given Marginals.” Psychometrika 56:3 (1991), 397–417.

[Snijders 02] T. A. B. Snijders. “Markov Chain Monte Carlo Estimation of Exponential
Random Graph Models.” Journal of Social Structure 3:2 (2002), 1–40.

[Steger and Wormald 99] A. Steger and N. C. Wormald. “Generating Random Regular
Graphs Quickly.” Combin. Probab. Comput. 8:4 (1999), 377–396.

[Strauss 86] David Strauss. “On a General Class of Models for Interaction.” SIAM
Review 28:4 (1986), 513–527.

[Tinhofer 79] G. Tinhofer. “On the Generation of Random Graphs with Given Prop-
erties and Known Distribution.” Applied Computer Science Berichte Praktische In-
formatik 13 (1979), 265–296.

[Tinhofer 90] G. Tinhofer. “Generating Graphs Uniformly at Random.” Computing
Supplementum 7 (1990), 235–255.

[Ulanowicz 05] Robert E. Ulanowicz. “Ecosystem Network Analysis” Available online
(http://www.cbl.umces.edu/∼ulan/ntwk/network.html), 2005.

522 Internet Mathematics

[Watts and Strogatz 98] Duncan J. Watts and Steven H. Strogatz. “Collective Dynam-
ics of ‘Small-World’ Networks.” Nature 393:6684 (1998), 440–442.

[Wolfram Research 01]Wolfram Research. “Mathematica,” version 4.1, 2001.

[Wormald 99] Nicholas C. Wormald. “Models of Random Regular Graphs.” In Surveys
in Combinatorics, 1999 (Canterbury), London Math. Soc. Lecture Note Ser. 267,
pp. 239–298. Cambridge, UK: Cambridge Univ. Press, 1999.

Joseph Blitzstein, Department of Statistics, Harvard University, Cambridge, MA 02138
(blitzstein@stat.harvard.edu)

Persi Diaconis, Departments of Mathematics and Statistics, Stanford University, Stan-
ford, CA 94305 (diaconis@math.stanford.edu)

Received November 9, 2009; accepted June 1, 2010.

