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Abstract. Mechanism design seeks algorithms whose inputs are provided by selfish

agents who would lie if it were to their advantage. Incentive-compatible mechanisms

compel the agents to tell the truth by making it in their self-interest to do so. Of-

ten, as in combinatorial auctions, such mechanisms involve the solution of NP-hard

problems. Unfortunately, approximation algorithms typically destroy incentive com-

patibility. Randomized rounding is a commonly used technique for designing approx-

imation algorithms. We devise a version of randomized rounding that is incentive-

compatible, giving a truthful mechanism for combinatorial auctions with single para-

meter agents (e.g., “single minded bidders”) that approximately maximizes the social

value of the auction. We discuss two orthogonal notions of truthfulness for a random-

ized mechanism–truthfulness with high probability and in expectation–and give a

mechanism that achieves both simultaneously.

We consider combinatorial auctions where multiple copies of many different items

are on sale, and each bidder i desires a subset Si. Given a set of bids, the problem
of finding the allocation of items that maximizes total valuation is the well-known

SetPacking problem. This problem is NP-hard, but for the case of items with many

identical copies, the optimum can be approximated very well. To turn this approxi-

mation algorithm into a truthful auction mechanism, we overcome two problems: We

show how to make the allocation algorithm monotone, and give a method to compute

the appropriate payments efficiently.
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1. Introduction

Multiple-item auctions are a basic tool of electronic commerce. These auctions

allow bidders to coordinate their purchases of complementary goods, such as

airfare, lodging, and ground transportation for a vacation package, or mobile

phone spectrum licenses in adjacent geographical regions. Many such large-

scale auctions have indeed been used recently by the FCC and governmental

bodies in Europe and elsewhere to allocate spectrum licenses to mobile phone

providers. The FCC auctions alone granted thousands of licenses to hundreds of

companies, raising more than $40 billion [Cramton 02]. While the FCC decided

to use an innovative simultaneous ascending auction for its various spectrum

licenses, it also strongly considered various forms of combinatorial auctions, in

which the participants bid on sets of items, rather than individual items. The

sheer magnitude of these spectrum auctions and the rise of electronic commerce

have both generated a surge of interest in designing good mechanisms for such

combinatorial auctions.

We will consider combinatorial auction mechanisms (direct revelation auc-

tions) where each bidder i bids a valuation bi for a set Si she is interested in.

We will assume that each bidder i is bidding for a single set Si, and this set

is known to the auctioneer or can be inferred from context. Thus, each agent’s

only private information is her true valuation for that set. A standard desire in

the design of combinatorial auctions is that they be truthful (or incentive com-

patible). The auction is truthful if each bidder’s best strategy is always to reveal

her true valuation, regardless of the other bidders’ valuations, and regardless of

how they decide to bid. That is, truthful bidding is a dominant strategy for each

bidder.

It is known that an allocation algorithm leads to a truthful mechanism if and

only if it is monotone (see [Mirrlees 71, Archer and Tardos 01, McAfee and

McMillan 88] and [Fudenberg and Tirole 91, pages 257—262]). A randomized

auction mechanism A is said to be monotone if for every agent i, the proba-

bility that A assigns the desired set Si to agent i is increasing in her bid bi.

This characterization is very useful in designing computationally feasible truth-

ful mechanisms for problems which are NP-hard–if we can come up with an

approximation algorithm that is monotone, there exists an accompanying pay-

ment scheme that gives a truthful mechanism. Further, the whole mechanism is

computationally efficient if the payments can also be computed efficiently.

In this paper, we develop a technique that makes randomized rounding-based

approximation algorithms useful in designing truthful mechanisms. Randomized

rounding of an LP solution is a commonly used technique for designing poly-

nomial time approximation algorithms. Typically, such rounding algorithms
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succeed with high probability. However, it is not clear what the associated

mechanism should do to ensure incentive compatibility when the rounding fails

to produce a feasible solution. We show a technique for obtaining a monotone al-

location algorithm from such a rounding scheme, and also show how to compute

payments in polynomial time.

There are two natural goals for designing good auctions: maximizing the rev-

enue, and maximizing the total valuation, which is the sum of the valuations of

the bidders who receive their desired sets. We will concentrate on the latter ob-

jective, which is referred to as efficiency in the economics terminology. In some

cases, maximizing efficiency is a more important objective than generating rev-

enue. For instance, one of the primary goals in the spectrum auctions was to get

spectrum licenses into the hands of the companies that could best use them to

build up a viable mobile phone network; it is widely believed that high valuation

is a strong indicator of how well positioned the company is to make good use

of the spectrum license [Cramton 02]. The well-known Vickrey-Clarke-Groves

(VCG) mechanism [Vickrey 61, Clarke 71, Groves 73] is truthful and maximizes

the total valuation. However, finding the VCG allocation often requires solving

an NP-hard optimization problem (e.g., in the case of single-minded bidders,

the optimization problem is the well-known SetPacking problem), and simply

replacing the exact optimization routine required in the VCG mechanism with

an approximation algorithm causes the mechanism to lose its incentive compat-

ibility properties [Nisan and Ronen 00].

Over the last 15 to 20 years, there has been a large amount of work on approx-

imation algorithms for a huge array of hard optimization problems. However, so

far, there are only very few examples when approximation algorithms have turned

out to be useful for designing polynomial time truthful mechanisms. One of the

first such examples was due to Lehmann, O’Callaghan, and Shoham [Lehmann

et al. 02] for the case of single-minded bidders (i.e., each agent bids for a single

set), who give a mechanism based on a greedy allocation. Their mechanism is

truthful and attains a
√
m-approximation to the optimal allocation, where m is

the number of items. Moreover, they prove their result is nearly the best possi-

ble, in the following sense. For every constant c < 1
2 , there is no polynomial time

algorithm that achieves an approximation guarantee of mc, unless NP = ZPP .

Mu’alem and Nisan [Mu’alem and Nisan 02] consider the case of known single-

minded bidders, where the sets are known, and each agent’s only private data is

her valuation. They show how to combine certain truthful mechanisms into an

improved mechanism, while preserving truthfulness. Using this technique, they

improve the greedy mechanism of Lehmann et al. by adding a partial enumera-

tion of the space of allocations. The resulting polynomial time mechanism yields

an 6
√
m approximation, for any constant 6 > 0.
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We consider the case of known single-minded bidders when there are Ω(lnK)

copies of each item available, where K is the maximum size among any of the

sets Si. For the corresponding optimization problem of finding an allocation

maximizing total valuation, there is a good approximation algorithm that uses

randomized rounding. Our randomized auction mechanism is based on this algo-

rithm. To turn the approximation algorithm into a truthful auction mechanism,

we overcome two difficulties: We show how to make this allocation monotone,

and give a method to compute the appropriate payments efficiently. Our auction

mechanism runs in polynomial time, is truthful, and attains a (1+6) approxima-

tion to the optimal valuation. It essentially implements the fractional version of

the VCG mechanism, both in terms of expected allocation and expected revenue.

2. Basic Definitions

A combinatorial auction is designed to divide up a set G of items among a set N
of n bidders. Each bidder i has a valuation function vi : 2

G → R+ that describes
her preferences over the various subsets of items. For S ⊆ G, vi(S) represents
the maximum amount of money bidder i is willing to pay for the set of items

S. The function vi is known only to player i. A single-minded bidder i is one

who values only a particular set of items. More formally, there is a set Si and

a c ≥ 0 such that vi(T ) = c if Si ⊆ T and vi(T ) = 0 otherwise. We consider

the case where all bidders are single-minded, and the auctioneer knows the sets

Si ahead of time. This is the case of known single-minded bidders considered

by [Mu’alem and Nisan 02]. There can be multiple copies of each good, in which

case the multiplicity mj denotes the number of copies of item j that are available.

For simplicity, we assume that each bidder desires only one copy of each good

in her desired set; that is, Si is a set, not a multiset. This assumption is not

crucial to our auction mechanism. We make it only to simplify the statements

of our performance guarantees. In particular, many of our results guarantee

some small failure probability, which is valid so long as the multiplicities mj are

sufficiently high. If the Si are allowed to be multisets, then the expressions for

the multiplicities become more complicated.

We consider direct revelation auction mechanisms. Each player i submits a

bid bi to the mechanism. Player i’s bid is supposed to represent the maximum

amount vi that she is willing to pay for her desired set, but she may choose to lie.

We assume that vi is some given constant that does not depend on the outcome

of the auction or on the other players’ bids (i.e., a private values model). Based

on the bids, the mechanism decides which players win and at what price. Denote

the vector of all n bids by b. Formally, a mechanism M is a collection of 0-1
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functions xi(b) and real functions Pi(b), where xi(b) is 1 if i wins her desired

set and 0 otherwise, and Pi(b) is the price i must pay. The functions xi must

be such that each item is sold to at most as many players as there are items

available, i.e., i:j∈Si xi ≤ mj for each item j. We define

profiti(b) = vixi(b)− Pi(b), (2.1)

that is, i’s valuation for the goods she gets, minus the price she pays. We assume

that each player’s goal is to maximize her own profit. The allocation functions

xi and the price functions Pi are all publicly known. The only pieces of private

information are the valuations–only player i knows the true value of vi. We

require that our mechanisms satisfy the voluntary participation condition, which

says that a player is charged zero if she loses, and her (expected) payment is

at most bi if she wins. This guarantees that players who bid truthfully always

obtain non-negative (expected) profit.

In the game theory literature, preference orderings over outcomes are often

given by utility functions, and the term utility typically refers to von Neumann-

Morgenstern utilities. This means that a player’s utility for a probability distrib-

ution over several outcomes is the expected utility of the random outcome. One

usually refers to an expression of the form (2.1) as a quasilinear utility function.

We instead use the term profit to emphasize that one should not necessarily

interpret it as a von Neumann-Morgenstern utility. The assumption that profits

take the form (2.1) simply means that all the valuations can be expressed in a

common unit of money. Whether or not the agents are risk-neutral (i.e., wish

to maximize expected profit) is a separate assumption that we may or may not

wish to make.

Given a publicly specified auction mechanism, how should a player bid to

maximize her own profit? Let b−i denote the vector of bids by all bidders besides
i, so we can write b as (b−i, bi). We say that truthtelling is a (weakly) dominant
strategy for bidder i if, no matter what the other agents do, bidding her true

valuation vi will maximize her profit. That is, vi ∈ argmaxbiprofit(b−i, bi), for all
b−i. In other words, even if player i knew the bids of the other agents ahead of
time, still the best she could do is to tell the truth. If truthtelling is a dominant

strategy for each agent, then we say the mechanism is truthful (or incentive

compatible). For a deterministic mechanism to be truthful, it is necessary that

bidder i’s price Pi(b−i, bi) depends on her own bid bi only to the extent that it
determines whether she wins or loses.

Auction designers care about truthfulness for two main interrelated reasons.

First, it makes life easy for the bidders. In order to determine an optimal bidding

strategy, each bidder only has to figure out her own valuation. She does not

have to make any assumptions about the other players’ valuations, or what
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bidding strategies they will use. In particular, she does not have to perform

any difficult Nash equilibrium calculations, nor does she have to assume that

the other agents are performing those same calculations to determine their own

bids. The second reason is that, because truthful bidding is a dominant strategy,

players are likely to follow it, so bidder behavior becomes much more predictable

than in an auction without dominant strategies.

Sometimes it is useful for the mechanism to use randomization. A randomized

mechanism can be viewed as a randomization over a collection of determinis-

tic mechanisms. That is, a randomized mechanism flips some coins to select

a random element ω from some probability space, then uses a deterministic

mechanismMω based on the coin flips. All details of the mechanism are public

knowledge, except for the actual outcomes of the coin flips. There are several

notions of truthfulness for randomized mechanisms. The strongest notion is for

the mechanism to be universally truthful. This means that for every ω, the

mechanism Mω is truthful. This concept has been used in [Nisan and Ronen

01, Bar-Yossef et al. 02, Goldberg et al. 01, Fiat et al. 02], but it is very restric-

tive. For example, [Archer and Tardos 01] considers a machine scheduling prob-

lem for which no universally truthful constant-factor approximation mechanism

is known, but they attain a 3-approximation via a mechanism that is truthful

in expectation.

Because strong truthfulness is so restrictive, there have been various attempts

to find a weaker, but still useful, concept. One approach is to guarantee

that truthful bidding always maximizes a player’s expected profit

[Archer and Tardos 01], i.e., the mechanism is truthful in expectation. Two

orthogonal notions are that a player may benefit from lying, but not by much

[Schummer 01], or only with a small probability. We pursue the first and third

approaches.

We say a randomized mechanism is truthful with error probability 6 if for each

b−i and each vi we have Pr[vi /∈ argmaxbiprofiti(b−i, bi)] ≤ 6. If 6 is inverse

polynomial in some specified parameters of the auction (such as the number

of items or bidders), then we say the mechanism is truthful with high probabil-

ity. Even in the rare event that a bad ω is chosen by the mechanism, com-

puting an effective lie could be difficult and would require knowledge about the

other bids. Moreover, such a lie may backfire in the probability (1 − 6) event

that the mechanism selects a good ω. In using such a mechanism, one hopes

that these factors combined will convince the agents not to bother lying. This

notion may be preferable to that of truthfulness in expectation because it does

not assume players are risk-neutral. In this paper, we design an auction mech-

anism that is simultaneously truthful in expectation and truthful with high

probability.
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3. Our Mechanism for Known Single-Minded Bidders

We design a randomized mechanism based on solving the natural linear pro-

gramming relaxation of the SetPacking problem, and randomly rounding the

resulting fractional allocation. In the case that the number of copies of each

item is Ω(lnK) (where K is the maximum size of a set Si), we prove that our

mechanism achieves near-optimal total valuation, is truthful in expectation and

strongly truthful with high probability, and has revenue that compares well with

a natural variant of VCG. We describe our mechanism by successive refinement

of a simple randomized rounding idea, sprinkling in motivation as we encounter

and overcome various obstacles.

First, recall that a deterministic mechanism for known single-minded bidders

is truthful if and only if the allocation rule is monotone and the price for a

winning player equals her “threshold.” That is, if we fix the other bids b−i, then
player i has some threshold bid Ti(b−i) such that she wins and pays Ti(b−i) if
bi > Ti(b−i), and loses if bi < Ti(b−i). (If bi = Ti(b−i), the player can win and
pay Ti(b−i), or lose and pay zero; it doesn’t matter which.) This characterization
has been noted many places, such as [Goldberg et al. 01, Lehmann et al. 02,

Archer and Tardos 01, Archer and Tardos 02, Ronen 00, Mu’alem and Nisan

02]. Analogously, a randomized mechanism is truthful in expectation if and only

if for every agent i, the probability pi(b−i, bi) that the mechanism assigns her

the desired set Si is increasing in her bid bi, and her expected payment is equal

to a certain integral of the function pi (see [Mirrlees 71, Archer and Tardos 01]

or [Fudenberg and Tirole 91, pages 257—262]).

Our mechanism works as follows. First, collect the bids. Using some small

fixed 6I ∈ (0, 1) that is publicly known, pretend that we have only mIj =
u(1 − 6I)mjJ copies of each item j to distribute. Now, solve the following linear

program to get an optimal fractional allocation, using the artificially reduced

supply of goods.

maximize i∈N bixi (3.1)

subject to: i:j∈Si xi ≤ mIj for all j ∈ G
0 ≤ xi ≤ 1 for all i ∈ N

Denote the optimal fractional allocation by x. We assume that we always find

a vertex solution to the linear program, and break ties in a particular fixed way

independent of the bids b (e.g., between two vertex solutions, choose the solution

with the higher value of xi for the smallest index i in which they differ). Notice

that a fractional value of xi means that the LP allocates player i an xi fraction

of each good in her set Si. Now we perform the standard trick of treating the
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xi as probabilities. We define a preliminary set of initial winners by selecting

each bidder i independently with probability xi. However, we may have tried to

sell too many copies of some items, so we will need to modify this outcome by

deleting certain selected bidders. The modified outcome will be feasible, yet we

keep the auction monotone in the bids.

First, it is not hard to see that, with high probability, no item is oversold.

Chernoff Bound. [Motwani and Raghavan 95] Let X1, . . . , Xn be independent Poisson
trials such that, for 1 ≤ i ≤ n, Pr[Xi = 1] = pi. Then for X = X1 + . . . +Xn,

µ ≥ p1 + . . .+ pn, and any α < 2e− 1, we have

Pr[X > (1 + α)µ] < e−µα
2/4.

Proposition 3.1. Let c > 0. Suppose that each item j ∈ G has multiplicity mj =

Ω(lnK). Then the probability that a given item is oversold is at most 1
Kc+1 (the

multiplicative constant inside the Ω is
4(c+1)
6 2(1−6 )).

It is easy to show that this randomized initial allocation is monotone, i.e., that

the value xi in the optimum is monotone in the bid bi of agent i.

Lemma 3.2. Let x be an optimal solution to a linear program when the objective

function vector is b, and let xI be an optimal solution when the objective function
vector is bI (where ties are broken independently of b and bI). Suppose bi = bIi
for all i W= i0 and bIi0 > bi0 . Then either xI = x or xIi0 > xi0 .

Proof. Since x is the optimal solution to the linear program, and xI is a feasible
solution,

b · x ≥ b · xI. (3.2)

Similarly,

bI · xI ≥ bI · x. (3.3)

If x = xI, we are already done. Otherwise, the two vertices are distinct, and
since the tie breaking rule is the same, one of the two inequalities must be strict.

Adding (3.2) and (3.3), and noting that bI ·x = b ·x+(bIi0 −bi0)xi0 for all vectors
x, we get

(bIi0 − bi0)(xIi0 − xi0) > 0

from which the result follows.
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From the above result, it follows that the probability of rounding any agent to

1 is monotone in her bid. Thus, if no items were ever initially oversold, we would

get a truthful mechanism. However, there is some probability that an agent i

is not allocated her set even though she is initially rounded to 1, because some

item j in Si may be oversold, in which case some or all of the agents desiring j

must be dropped. For reasons of egalitarianism (and for lack of a better idea),

we propose to drop every agent i whose set Si contains an oversold item j. As

the following example shows, the overall probability that agent i wins is not

necessarily monotone in her bid.

Example 3.3. Consider an instance where there are 51 agents bidding for an item
“A” with multiplicity 1. Suppose that when the first agent bids a value b1, the

fractional allocation is 1
2 for agent 1, and

1
100 for agents 2, . . . 51. In this case,

the probability that agent 1 is an initial winner is 1
2 , and the probability that

she is finally allocated the item is 1
2 (1− 1

100 )
50 ≈ 0.3.

Now suppose she raises her bid to b2 > b1 and the fractional solution changes

to 0.51 for agent 1, 0.49 for agent 2, and 0 for all the other agents. In this case,

agent 1’s probability of being an initial winner increases to 0.51. However, her

probability of being allocated the item is now (0.51)(1 − 0.49) ≈ 0.26. Hence,
the algorithm described above is not monotone.

As a result, we do not yet have a truthful mechanism. In the next two sections,

we show how to achieve monotonicity. We give a very high level description in

Section 3.1. and then fill in the necessary details in Section 3.2.

3.1. Dealing with Oversold Items: The Basic idea

While the probability that the rounding fails is small, it may depend on the

agent’s bid and may not be monotone. Our approach is to drop each agent with

some additional probability so as to ensure that the overall probability that agent

i wins is directly proportional to the variable xi. When the rounded solution is

not feasible, it may still be possible to serve some agents without clashes. We

use the following approach:

Step 1. Solve the scaled linear programming relaxation (3.1).

Step 2. Round each variable xi to 1 with probability xi, set to 0 otherwise.

Step 3. Select all agents i that are rounded to 1 and such that the supply con-

straints for all items in Si are satisfied.

Step 4. Drop each agent with some additional probability (to be defined later).
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Let x̂ denote the integer assignment resulting in Step 2. Consider an agent i0.

The agent is selected in Step 3 if she is rounded to 1 in Step 2 and the constraints

for all items in Si0 are satisfied. That is, i0 is selected if x̂i0 = 1 and x̂ satisfies

i: j∈Si, iW=i0
x̂i ≤ mj − 1 for all j ∈ Si0 .

Let Ii0 = {i : Si ∩ Si0 W= ∅}. The variables xi : i ∈ Ii0 form a feasible solution

to the scaled linear program (3.1) induced on the items in Si0 . Let qi0 be the

conditional probability that no item in Si0 is oversold, given that x̂i0 = 1. Set

q∗ = 1 − 2
Kc . Using Proposition 3.1 and the union bound on the items in Si0 ,

we get that qi0 > 1− 1
Kc > q

∗. Thus the probability that agent i0 is selected at
Step 3 is xi0qi0 > xi0q

∗. Therefore, in Step 4 we would like to drop agent i0 with
probability 1 − (q∗/qi0), so that the probability that agent i0 survives through
the end of Step 4 is exactly xi0q

∗. We would then have a monotone allocation
algorithm.

3.2. Dealing with Oversold Items: Important Details

Note that the algorithm described above requires us to exactly compute the

probability qi0 . However, it is NP-hard to compute this number exactly, so the

above scheme cannot be implemented efficiently. We get around this problem

by using an estimator for this probability. First, we need the following simple

observation:

Lemma 3.4. Let x be any vertex of the polytope {x : Ax ≤ r, 0 ≤ x ≤ 1}, where
A ∈ {0, 1}m×n and r ∈ Zm. Then x ∈ Qn and each xi can be written with
denominator D, for some D ≤ m!.

Proof. Any vertex of the polytope is given by a linear system Ãx̃ = r̃ where Ã is a
nonsingular square submatrix of A, and x̃ and r̃ are corresponding submatrices

of x and r, respectively. Then x̃ = Ã−1r̃. Let D = det(Ã). Since Ã is a 0-1

matrix, D ≤ m!. Moreover, D · Ã−1 and r̃ are integer matrices and hence Dx̃
is an integer vector. Any xi not in x̃ is set to zero or one, and hence trivially

satisfies the conclusion. Hence, the claim.

Corollary 3.5. Let xI, xII be vertices of the polytope {x : Ax ≤ r, 0 ≤ x ≤ 1}, where
A ∈ {0, 1}m×n and r ∈ Zm. Then for each i, either xIi = xIIi or xIi ≥ xIIi (1 + δ)

or xIIi ≥ xIi(1 + δ), where δ = (1/m!)2.

Corollary 3.5, along with Lemma 3.2, implies that whenever an agent i in-

creases her bid, this either has no effect on the allocation or it increases xi by a

factor of at least (1 + δ).
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The algorithm described above requires computing 1/qi0 for each agent i0.

Instead of the exact value, we use an estimator Y for this number, and in Step

4 we retain agent i0 with probability q
∗Y . Consider the following experiment:

Round xi0 to 1. For each i ∈ Ii0 , round xi to 1 independently with probability
xi. Recall that qi0 is defined to be the probability that this solution satisfies the

constraints for all items in Si0 . Let the random variable X denote the number

of trials of the experiment required before this happens, so that E[X] = 1/qi0 .

Our estimator Y for 1/qi0 is min(
1+δ6
N

N
f=1X

f, 1/q∗), where N = O(Kc log 1
δ6 ),

the Xf are independent trials of the above experiment, c is from Proposition 3.1,

and 6U 1 is some error parameter of our choosing. (Later, 6 will be part of the

error probability in our guarantee on strong truthfulness. We will typically set

6U 1/Kc.) The reason we take the min is that in Step 4, we retain agent i0 with

probability q∗Y , so we must ensure that this number is at most 1. The expecta-
tion of 1+δ6N

N
f=1X

f is exactly (1+δ6)/qi0 , which is less than and bounded away

from 1/q∗. Since N
f=1X

f is a negative binomial random variable with success

probability qi0 ≈ 1, its distribution is concentrated about its mean, so the ex-
pectation of Y will not be much smaller than (1+ δ6)/qi0 . In particular, we can

use moment generating functions to bound the upper tail’s contribution to the

expectation (see, e.g., [Motwani and Raghavan 95]), and obtain the following.

Lemma 3.6. The estimator Y defined above is at most 1/q∗, and E[Y ] ∈
[1/qi0 , (1 + δ6)/qi0 ].

This finishes the description of our algorithm, which we will call RandRound.

Note that the probability that agent i0 is not dropped in Step 4 of the algorithm

above is exactly q∗E[Y ]. We now argue that this mechanism is monotone.

Theorem 3.7. The probability that an agent i is selected by the algorithm Rand-

Round is monotone increasing in her bid bi.

Proof. Fix an agent i and a vector of bids b−i for agents other than i. Let

bIi > bi. Consider the corresponding LP optima x and x
I. From Lemma 3.2,

either x = xI or xIi > xi. In the first case, the experiment is the same and hence
agent i’s probability of succeeding is the same whether she bids bi or b

I
i. In the

second case, her probability pi(b−i, bi) of winning if she bids bi is given by

pi(b−i, bi) = xiqiq
∗E[Y ]

≤ xiqiq
∗(1 + δ6)/qi

= xiq
∗(1 + δ6).
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If she bids bIi, then her probability of winning is

pi(b−i, bIi) = xIiq
I
iq
∗E[Y I]

≥ xIiq
I
iq
∗/qIi

≥ xiq
∗(1 + δ),

where the last inequality follows from Corollary 3.5. Since 6 < 1, this shows that

the above LP rounding algorithm is monotone.

Theorem 3.8. Suppose that each item has multiplicity Ω(lnK), as in Proposi-

tion 3.1. Let OPT denote the optimal total valuation achievable by any allo-

cation. Then the expected total valuation achieved by the above algorithm is at

least (1− 6I)q∗OPT .

Proof. Every feasible allocation gives a feasible solution to the LP with the actual
multiplicities mj . Scaling down any solution to this LP by a factor of (1 − 6I)
yields a solution to our LP (3.1) with the artificially reduced multiplicities mIj .
Therefore, the optimal solution to this LP has value i∈N bixi ≥ (1− 6I)OPT .
The probability that agent i is selected is at least xiq

∗, hence the expected total
valuation is at least (1− 6I)q∗ times the LP optimum.

4. Computing Payments

It is not obvious how one should compute payments for the winners. There is a

payment scheme given in [Archer and Tardos 01] that yields truthfulness in ex-

pectation (provided the allocation rule is monotone), but in our case it involves

an integral of a step function with possibly exponentially many breakpoints. One

approach is to use an appropriate unbiased estimator for this integral, which we

explain briefly below. In Section 4.1, we show another method, which attains

truthfulness with high probability (but not in expectation), using a simpler (non-

monotone) allocation rule. Finally, in Section 4.2, we show how to combine this

payment scheme with our monotone allocation rule of Section 3.1 to simultane-

ously obtain truthfulness in expectation and with high probability.

Recall that pi(b−i, bi) denotes the overall probability that i wins her desired
set Si. Note that b−i is fixed throughout this discussion, so we suppress it in
the notation where convenient. A result in [Archer and Tardos 01] says that to

guarantee truthfulness in expectation, i’s payment should be

Ri(b−i, bi) = pi(b−i, bi)bi −
bi

0

pi(b−i, u)du. (4.1)
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x(1)

x(2)

x(3)

x(j)

bi

profit i

t(1) t(2) t(3) t(j)

Ri(b-i,bi)

Figure 1. The graph shows i’s probability pi(b−i, bi) of winning as a function of
her bid bi. The gray area Ri(b−i, bi) is her expected payment. If bi is a truthful
bid, then the white area is her expected profit.

Using the definition of incentive compatibility, the monotone property of the

curve and a very simple calculation shows that this payment function induces

truthtelling. This is a special case of a more complicated multidimensional result

in [McAfee and McMillan 88]. A nice pictorial proof is given in [Archer and

Tardos 01]. To gain some intuition for this, notice first that the payment formula

yields the single-item Vickrey auction (highest bidder wins, and pays the second-

highest bid) as a special case [Vickrey 61]. In the Vickrey auction, pi is just a 0-1

step function. Now suppose pi is a step function with multiple breakpoints. On

the sections where pi is flat, Ri does not change, so all bids along the flat section

give the same result. For a truthful bidder, the first term in the payment function

exactly cancels out the agent’s expected valuation, so the second term is the

profit. As an agent raises her bid above her true value, whenever a breakpoint of

pi is crossed, the payment increases by more than the agent’s expected valuation,

so overbidding is detrimental. The symmetric situation holds for underbidding.

In order to satisfy individual rationality, we must charge 0 to losing bidders.

Thus, one truthful payment scheme is to charge Ri(b−i, bi)/pi(b−i, bi) to agent
i if she wins. Note that pi(b−i, u) is a step function which jumps whenever
the selected vertex in the LP (3.1) changes and is flat elsewhere. See Figure 1.

Thus, it could have exponentially many breakpoints, so it is not clear how to

compute Ri efficiently. Instead, we can randomize the payment for winning

bidder i by running the following experiment. Select some u ∈ [0, bi] uniformly
at random, and run the allocation algorithm once, assuming i had bid u. If in the

experiment i wins, set Z = bi, else set Z = 0. Then Z is an unbiased estimator
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x(1)

x(2)

x(3)

x(j)

bit(1) t(2) t(3) t(j)

yi

Ti(b-i,yi)

Figure 2. The graph shows i’s fractional allocation as a function of her bid bi (with
b−i fixed). It is a step function that is flat while one vertex of the LP (3.1) stays
optimal, then jumps when another vertex becomes preferred. Since yi lands in
(x(2), x(3)), i’s payment is t(3).

for the integral. Let X be an independent unbiased estimator for 1/pi(b−i, bi).
Then the random price bi − ZX for agent i has the correct expectation.1

4.1. Threshold Payments

Consider the simpler allocation rule where we leave out Step 4 (the drop step).

As previously noted, this allocation may not be monotone, in which case there

is no payment scheme that is truthful in expectation. Here, we give payments

that are instead truthful with high probability.

In the bidder selection step, let us perform the rounding by selecting n inde-

pendent uniform[0, 1] random variables y1, . . . , yn, and choosing i to be an initial

winner if yi ≤ xi. Note that each bidder i is selected by this experiment inde-
pendently with probability xi, as required by Step 2. For each winning bidder

i, we compute a price that will depend on the outcome of the random variable

yi (and of course also on b−i). Fix b−i and a realization of the random cutoff yi.

There is a threshold value Ti(b−i, yi) such that i will lose if bi < Ti(b−i, yi) and
be an initial winner if bi > Ti(b−i, yi). See Figure 2. This threshold is the point
at which xi(b−i, bi), considered as a function of bi with b−i fixed, first rises to yi.
We set player i’s price to be Ti(b−i, yi) if she actually wins.
To compute T (b−i, yi), we binary search on bi, re-solving the LP each time.

For the vector of bids (b−i, Ti(b−i, yi)), there are two equally good fractional allo-
cations x and xI. Therefore, Ti(b−i, yi)(xi−xIi) = j W=i bj(x

I
j−xj). Assuming all

1This payment has the peculiar property that it is often negative, i.e., the auctioneer must

pay the buyer.
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bids are given to d bits of precision, we can express Ti(b−i, yi) as a fraction with
denominator at most 2d(m!)4 (by Lemma 3.4), so we can use binary search and

the method of Diophantine approximation to compute it exactly in polynomial

time (see [Schrijver 86]).

If our mechanism never had to throw away any initial winners, then our al-

location algorithm would be universally truthful. Suppose we fix a particular

realization ω of the vector of random variables y1, . . . , yn. Then the only circum-

stance under which agent i could benefit by lying is if i is selected as an initial

winner, but is discarded because one of the items in Si is oversold. Since this

probability is at most 1
Kc , our mechanism is truthful with high probability.

This payment scheme also has the nice property that it satisfies the “no posi-

tive transfers” property–i.e., the bidders never get paid by the mechanism–and

a stronger notion of individual rationality–if agent i wins, then she pays at most

bi for sure, not just in expectation.

4.2. Combining Threshold Payments with the Monotone Allocation

We now show how to modify this threshold scheme to get truthfulness in ex-

pectation, using the monotone allocation rule of Section 3.1. If it were the case

that pi = q∗xi for all i, i.e., each agent’s probability of winning was directly
proportional to her fractional allocation from the LP, then the threshold pay-

ment scheme would give the correct expected payment, so it would already be

truthful in expectation. The problem is that we just have pi = q∗i xi for some
q∗i ∈ [q∗, q∗(1 + δ6)], and moreover we cannot compute the q∗i exactly. Our solu-
tion is to use the threshold payments as a first approximation, then add a small

correction on a set of small probability.

Let the fractional solution values (the steps in Figure 2) be x(1), x(2), . . . , x(j)

such that the solution for agent i’s actual bid bi is x
(j). Moreover, let q(k) be

the probability that the sale to agent i survives Steps 3 and 4 given that she

is selected in Step 2, when the solution corresponding to x(k) is used. To get

truthfulness in expectation, when agent i wins, her expected payment should be

1

q(j)x(j)
bix

(j)q(j) −
j−1

k=1

(t(k+1) − t(k))q(k)x(k) − (bi − t(j))q(j)x(j) .

Suppose we use the threshold payment scheme. Given that agent i wins, yi is

distributed uniformly on [0, x(j)]. Thus, agent i’s expected payment is
1
x(j)

j
k=1 t

(k)(x(k) − x(k−1)), which rearranges to

1

x(j)
x(j)bi −

j−1

k=1

(t(k+1) − t(k))x(k) − (bi − t(j))x(j)
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q*x(1)

q*x(2)

q*x(3)

q*x(4)

bit(1) t(2) t(3) t(4)

q*x(4)
q(4)x(4)

(1+    )q*x (4)

x(1)

x(2)

x(3)

x(4)

bit(1) t(2) t(3) t(4)

x(4)

(1+    )x (4)

yi
good

yi
bad

good case:
use threshold

bad case:
add correction term

Possible payment

Ri(b-i,bi)

Figure 3. The left graph shows agent i’s probability of success as a function of
her bid bi. The boxes indicate our margin of uncertainty about this probability.
Modulo this uncertainty, the shaded area denotes the truthful payment function.

The right graph illustrates our payment scheme.

where x(0) = 0. Therefore, we must add some correction term to increase this

payment by

j−1

k=1

(t(k+1) − t(k))x
(k)

x(j)
1− q

(k)

q(j)

in expectation.

One way to do this is to add (t(k+1)− t(k))1−q(k)/q(j)6δ whenever yi ∈ [x(k), (1+
6δ)x(k)], for k = 1, . . . , j − 1. See Figure 3. Since we do not know q(k) and

1/q(j), we must replace them in the formula with independent unbiased esti-

mators. These estimators can be obtained by running our allocation algorithm.

The expected payment is now that given by formula (4.1), so the mechanism is

truthful in expectation. When yi /∈ [x(k), x(k)(1 + 6δ)] for all k, our payments

are just threshold payments. This happens with probability at least (1− 6) since
by Corollary 3.5, consecutive fractional allocations x(k) are spaced by factors of

at least (1 + δ). As we argued in the last section, the threshold mechanism is

strongly truthful with high probability. Hence, we get the following. (Recall

6U 1/Kc.)

Theorem 4.1. Assuming the item multiplicities are all Ω(lnK) as in Proposition 3.1,
allocation algorithm RandRound combined with the above payment scheme is

truthful in expectation and is also truthful with error probability 6 + 1
Kc .
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5. Revenue Considerations

Now we consider the revenue generated by our auction. We show that the ex-

pected revenue generated is very close to that generated by a natural fractional

relaxation of the VCG mechanism. First, we must define this mechanism.

Recall the VCG mechanism: It chooses a feasible allocation that maximizes

the utilitarian objective function, which is the total reported valuation of the

winning players. That is, it selects some

x∗(b) ∈ argmaxx
i∈N

bixi, (5.1)

where x runs over all feasible allocations.

The mechanism computes a bonus for each bidder, based on that bidder’s

marginal value, which is the difference she made in the objective function by

participating. Formally, let V (N − N I) denote the maximum total valuation

achievable in (5.1) when the players in N I are removed. Then bidder i’s mar-
ginal value is defined to be V (N ) − V (N − i). The mechanism charges Pi(b) =

bixi − (V (N ) − V (N − i)) to each player i. (This formula evaluates to zero for
players who lose.) The utilitarian allocation is clearly monotone. Moreover, the

objective function is indifferent about satisfying bidder i when she bids exactly

her threshold. So if she wins, then V (N ) − V (N − i) = bi − Ti(b−i), so the
VCG payment is Ti(b−i). Notice that if player i bids truthfully, then her profit
is equal to her marginal value.

The VCG mechanism is defined with respect to a set of feasible allocations.

Usually we maximize over all feasible integer allocations, meaning that each

bidder either wins or loses, and no item is oversold. However, we could consider

enlarging the set of allowed allocations to permit fractional allocations. That

is, we could allow ourselves to let player i win to a fractional extent xi, which

would mean that she receives an xi fraction of each good in Si. In other words,

we would be maximizing the linear program (3.1), using the actual multiplicities

mj . Of course, we could implement such a mechanism only if the goods were

divisible. We assume that player i attains a benefit of vixi from winning to the

fractional extent xi. Thus, she wishes to maximize profiti(b) = vixi(b) − Pi(b).
Player i’s marginal value to the system is V (N ) − V (N − i), where V (N I) is
the optimal LP value using only the players in N I. The VCG payment formula

becomes Pi(b) = bixi−(V (N )−V (N − i)). We refer to this resulting mechanism
as fractional VCG, or FVCG for short.

Similarly, we can define an FVCG mechanism with respect to the artificially

reduced multiplicities mIj . We will show that the expected revenue of our mech-
anism is almost the same as the revenue generated by the fractional VCG mech-

anism using the reduced multiplicities.
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First, we obtain an expression for the revenue generated by the fractional VCG

mechanism. Fixing b−i, how does the optimal allocation xi(b−i, bi) change as i
increases her bid from 0 upward? Suppose the mechanism always selects some

vertex solution of the LP. Initially, xi = 0. The only part of the LP that changes

is the direction of the objective function vector, not the polytope of feasible

solutions. Thus, the optimal xi remains zero for an interval until i’s bid hits

some threshold t(1). At this point, some other vertex solution with xi = x
(1) > 0

becomes optimal. Now this solution remains optimal for some interval, until xi
jumps again at bi = t

(2) to some higher level x(2). Suppose xi jumps j times at

t(1), . . . , t(j) to new levels x(1), . . . , x(j) as we raise i’s bid to its actual value bi.

For bids in (t(k), t(k+1)), the LP value increases at rate x(k). Thus, i’s marginal

value is
j−1
k=1 x

(k)(t(k+1) − t(k)) + x(j)(bi − t(j)), and her price Pi is bixi minus
this, which is

j−1

k=0

(x(j) − x(k))(t(k+1) − t(k)),

where x(0) = t(0) = 0. To visualize this computation, consider Figure 1, with the

curve denoting xi(b−i, bi) (whereas originally the curve in Figure 1 was the prob-
ability of being selected as a winner, which is ≈ q∗xi(b−i, bi)). In our mechanism,
the expected payment by agent i is

j−1

k=0

(q(j)x(j) − q(k)x(k))(t(k+1) − t(k)),

where q(k) is the probability that the sale to agent i is not cancelled in Steps 3

and 4, if i were to bid between t(k) and t(k+1) (just as in Section 4.2.). Thus, we

are comparing vertical strips of equal width, and height x(j)− x(k) for FVCG as
opposed to height q(j)x(j) − q(k)x(k) for our mechanism. But

q(j)x(j) − q(k)x(k) ≥ q∗x(j) − (1 + 6δ)q∗x(k)

≥ (1− 6)q∗(x(j) − x(k))
because q(k) ∈ [q∗, q∗(1 + 6δ)] and x(j) ≥ (1 + δ)x(k) for all k < j.

Theorem 5.1. Suppose that each item j ∈ G has multiplicity mj = Ω(lnK), as

in Proposition 3.1. Then the expected revenue generated by RandRound is

at least (1 − 6)q∗ times the revenue generated by the FVCG mechanism with

multiplicities mIj .

Under the same conditions on the multiplicities, the probability that player i

actually wins is also at least q∗xi. Thus, the auction essentially implements the
FVCG mechanism on the artificially reduced multiplicities.
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5.1. Comparing Against the “Optimal” Mechanism

It is natural to ask how our revenue compares with that of an “optimal” truthful

mechanism, but it turns out that even posing this question correctly is a tricky

endeavor. One truthful mechanism is to arbitrarily select a feasible set W of

possible winners, set fixed prices Pi for every bidder in that set, and refuse to

sell to any other players. Any player i with vi ≥ Pi will then buy her set at price
Pi. If we happen to get lucky and choose W to be the feasible set of bidders

that maximizes the total valuation, and happen to choose Pi = vi for each

i ∈W , then we reap the entire valuation as revenue. However, this “omniscient
mechanism” hardly seems a fair benchmark. In fact, it is well known that even

when auctioning just a single copy of a single item, no truthful mechanism can

always attain a guaranteed fraction of the optimal valuation, because there is no

way to deal with a single astronomical bidder.

Therefore, in the single item case, [Goldberg et al. 01, Fiat et al. 02, Lavi and

Nisan 00] suggest comparing against variants of the VCG mechanism. We have

shown that our auction achieves expected revenue approximately equal to that

of the FVCG mechanism with a slightly reduced supply of goods. It is easy to

construct a pair of examples showing that neither the VCG nor the FVCG mech-

anism’s revenue dominates the other. Moreover, it is well known that artificially

decreasing the supply of goods can sometimes dramatically increase revenues.

(See [Goldberg et al. 01] for a striking example.) Therefore, it is unclear how

the revenue compares with that of the VCG mechanism using the full supply.

This could be an interesting direction for further work. A huge body of litera-

ture addresses how various auctions fare under probabilistic assumptions about

the valuations, but we are not aware of any such work applied to combinatorial

auctions. This is another interesting future direction.

6. Lying about the Set: An Example

It is natural to ask if we can extend our method to handle the case where the set

Si is part of agent i’s bid (i.e., the case of single-minded bidders, instead of known

single-minded bidders). The following example shows that, if we insist that agent

i wins with probability roughly proportional to the fractional allocation xi given

by the LP, then it is impossible to obtain a mechanism for single-minded bidders

that is truthful with high probability.

Suppose there are three items {A,B,C} and three bidders {1, 2, 3}. One copy
of each item is available. Suppose bidder 1 bids 2 units for set {B,C} (the
truth), bidder 2 bids 3

2 units for set {A,B}, and bidder 3 bids 3
2 units for set

{A,C}. Then the LP solves to x = (12 , 12 , 12 ) (with total valuation 5
2 ). If bidder
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1 lies by increasing her set to {A,B,C} (but still bidding 2 units for it), then
the LP solves to x = (1, 0, 0) (with total valuation 2). Suppose that we actually

had three copies of each item available, but were just using 1 as the reduced

multiplicities. Then no item is ever oversold. Thus, our mechanism (without

the drop step) implements fractional VCG in expectation, so is still truthful in

expectation. However, we show that with probability 1
2 , bidder 1 benefits by

lying, and hence, we do not have truthfulness with high probability.

When player 1 bids her true set, her probability p1(b−1, b1) of winning stays
constant at 12 for b1 ∈ (0, 3]. Thus, the threshold payment scheme of Section 4.1
would charge her a price of 0 (leading to a profit of 2) for any y1 ∈ [0, 12 ]. When
y1 falls in (

1
2 , 1], however, she loses and has a profit of 0.

On the other hand, if she lies about her set as above, then p1(b−1, b1) jumps
from 0 to 1 at b1 =

3
2 . Thus, with probability 1, she wins and pays

3
2 , so her net

profit is 1
2 , irrespective of y1. Note that when her rounding variable y1 lands in

(12 , 1] (which happens with probability
1
2 ), her profit when she lies is more than

her profit when she tells the truth. Thus, with probability 1
2 , the mechanism is

not truthful.

We can extend this example to arbitrarily high item multiplicities by simply

adding in appropriate bidders j who bid high enough that they are fully satisfied

(i.e., the optimal solution has xj = 1). Note that in this case the reduced

multiplicities are smaller than the actual multiplicities only by an additive −2,
not a multiplicative 1

3 .

7. Conclusions
We have shown a general technique to modify a linear program rounding algo-

rithm to make it monotone. This gives an approximately efficient truthful mech-

anism (in expectation and with high probability) for the combinatorial auction

problem with single parameter agents.

The simple rounding algorithm can be derandomized using pessimistic esti-

mators [Raghavan 88]. It would be interesting to see if the algorithm can be

derandomized maintaining its monotonicity.

Finally, this scheme gives a truthful mechanism for known single-minded bid-

ders; an open problem is to relax this constraint.
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