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Abstract Listing all triangles is a fundamental graph operation. Triangles can have important
interpretations in real-world graphs, especially social and other interaction networks. Despite
the lack of provably efficient (linear, or slightly super linear) worst-case algorithms for this
problem, practitioners run simple, efficient heuristics to find all triangles in graphs with millions
of vertices. How are these heuristics exploiting the structure of these special graphs to provide
major speedups in running time?

We study one of the most prevalent algorithms used by practitioners. A trivial algorithm
enumerates all paths of length 2, and checks if each such path is incident to a triangle. A good
heuristic is to enumerate only those paths of length 2 in which the middle vertex has the lowest
degree. It is easily implemented and is empirically known to give remarkable speedups over
the trivial algorithm.

We study the behavior of this algorithm over graphs with heavy-tailed degree distributions,
a defining feature of real-world graphs. The erased configuration model (ECM) efficiently
generates a graph with asymptotically (almost) any desired degree sequence. We show that the
expected running time of this algorithm over the distribution of graphs created by the ECM
is controlled by the �4/3-norm of the degree sequence. Norms of the degree sequence are a
measure of the heaviness of the tail, and it is precisely this feature that allows non trivial
speedups of simple triangle enumeration algorithms. As a corollary of our main theorem,
we prove expected linear-time performance for degree sequences following a power law with
exponent α ≥ 7/3, and non trivial speedup whenever α ∈ (2, 3).

1. INTRODUCTION

Finding triangles in graphs is a classic theoretical problem with numerous practical
applications. The recent explosion of work on social networks has led to a great interest in
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using algorithms that can find triangles in graphs quickly. The social sciences and physics
communities often study triangles in real networks and use them to reason about underlying
social processes [18, 31, 37, 11, 12, 20]. Much of the information about triangles in these
four studies is determined by a complete enumeration of all triangles in a (small) graph.
Triangle enumeration is also a fundamental subroutine for other, more complex, algorithmic
tasks [7, 21].

From a theoretical perspective, Itai and Rodeh [22] gave algorithms for triangle find-
ing in O(nω) time (where n is the number of vertices and ω is the matrix multiplication
constant) using fast matrix multiplication. [36] Deep connections between matrix multipli-
cation and (edge-weighted) triangle enumeration are shown in [36]. But much of this work
is focused on dense graphs. Practitioners usually deal with massive sparse graphs with large
variance in degrees, from which subquadratic time algorithms can be trivially obtained but
are still too slow to run.

Practioners enumerate triangles on massive graphs (with millions of vertices) using
fairly simple heuristics, which are often easily parallelizable. This work is motivated by
the following question: Can we theoretically explain why simple algorithms for triangle
enumeration work in the real world?

Consider a trivial algorithm. Take an undirected graph with n vertices, m edges, and
degree sequence d1, d2, . . . , dn (so the degree of vertex v is dv). Call a path of length 2
(P2) closed if it participates in a triangle and open otherwise. Simply enumerate all P2s and
output the closed ones. The total running time is �(

∑
v d2

v ) (assume that checking if a P2 is
closed can be done in constant time), because every P2 involves a pair of neighbors for the
middle vertex. We will henceforth refer to this as the trivial algorithm. A simple heuristic
is to enumerate only those paths in which the middle vertex has the lowest degree of the 3
vertices in the path. We denote this algorithm by MinBucket .

1. Create n empty buckets B1, B2, . . . , Bn.
2. For each edge (u, v): if du ≤ dv , place it in Bu, otherwise place it in Bv . Break ties

consistently.
3. For each bucket Bv: iterate over all P2s formed by edges in Bv and output those that are

closed.

MinBucket is quite common in practice (sometimes taking the somewhat strange name
nodeIterator++) and has clean parallel implementations with no load balancing issues
[34, 17, 33]. For such simple algorithms, the total work pretty much determines the
parallel runtime. For example, it would take n processors with perfect speed up run-
ning a �(n2)-work algorithm to compete with a single processor running a �(n)-work
algorithm.

MinBucket is often the algorithm of choice for triangle enumeration because of
its simplicity and because it beats the trivial algorithm by orders of magnitude, as shown
in the previous citations. (A quick check shows at least 60 citations to [17], most cite
involving papers that deal with massive scale graph algorithms.) The algorithm itself has
been discovered and rediscovered in various forms over the past decades. The earliest
reference the authors could find was from the mid-80s when a sequential version of the
algorithm was devised [13]. We provide a more detailed history in later pages.

Nonetheless, MinBucket has a poor worst-case behavior. It would perform terribly
on a high-degree regular bipartite graph. If the input sparse graph (with high variance
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in degree) simply consisted of many such bipartite graphs of varying sizes, MinBucket
would perform no better than its trivial cousin. Then why is it good in practice?

1.1. Results

Since the seminal results of Barabási and Albert [3, 19, 10], researchers have assumed
that massive graphs obtained from the real world have heavy-tailed degree distributions
(often approximated as a power law). The average degree is thought to be a constant (or
very slowly growing), but the variance is quite large. The usual approximation is to think
of the number of vertices of degree d as decaying roughly as 1/dα for some small constant
α.

This seems to have connections with MinBucket . If edges tend to connect vertices of
fairly disparate degrees (quite likely in a graph with large variance in degrees), MinBucket
might provably give good running times. This is exactly what we set out to prove for a
natural distribution on heavy-tailed graphs.

Consider any list of positive integers d = (d1, d2, . . . , dn), which we think of as a
“desired” degree sequence. In other words, we wish to construct a graph on n vertices where
vertex v ∈ [n] has degree dv . The configuration model (CM) [4, 8, 26, 28] aims to create a
random (multi)graph for this purpose. Imagine vertex v being incident to dv “stubs,” which
can be thought of as half-edges. We take a random perfect matching between the stubs,
so pairs of stubs are matched to each other. Each such pair creates an edge, and the result
is a multigraph with the desired degree sequence. Usually, this is converted to a simple
graph by removing parallel edges and self-loops [9]. We refer to this graph distribution
as ECM(d), for input degree sequence d. This model has a fairly long history (which we
relegate to a later section) and is a standard method to construct a graph with a desired
degree sequence. It is closely connected to other models [15, 16, 24], in the context of
eigenvalues of graphs with a given degree sequence. These models simply connect vertices
u and v independently with probability proportional to the degree product dudv , similarly
to the Erdős–Rényi construction.

Our main theorem gives a bound on the expected running time of MinBucket for
ECM(d). We set m = (

∑
v dv)/2. We will, henceforth, assume that 0 < d1 ≤ d2 · · · ≤ dn

and that dn <
√

m/2. This “truncation" is a standard assumption for analysis of the
configuration model [26, 15, 24, 16, 28, 9]. We use

∑
v as a shorthand for

∑n
i=1, since it

is a sum over all vertices. The runtime bottleneck for MinBucket is in P2 enumeration,
and checking whether a P2 is closed is often assumed to be a constant time operation.
Henceforth, when we say “running time," we mean the number of P2s enumerated.

Theorem 1.1. Consider a degree sequence d = (d1, d2, . . . , dn), where m = (
∑

v dv)/2
and dn <

√
m/2. The expected (over ECM(d)) number of P2s enumerated by MinBucket

is O(n + m−2(
∑

v d
4/3
v )3).

Remark: Although we focus our exposition on the ECM model, our main theorem applies to
other random graph models, such as Chung–Lu graphs in particular; details are given in [6].

Before we actually make sense of this theorem, let us look at a corollary of this
theorem. It has been repeatedly observed that degree sequences in real graphs have heavy
tails, often approximated as power laws [3]. Power laws say something about the moments
of the degree distribution (equivalently, norms of the degree sequence). Because it does
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not affect our main theorem or corollary, we choose a fairly loose definition of power law.
This is a binned version of the usual definition, which states that the number of vertices of
degree d is proportional to n/dα . (Even up to constants, this is never precisely true because
there are many gaps in real degree sequences.)

Definition 1.2. A degree sequence d satisfies a power law of exponent α > 1 if the
following holds for all k ≤ log2 dn −1: for d = 2k , the number of sequence terms in [d, 2d]
is �(n/dα−1).

The following shows an application of our theorem for common values of α. This
bound is tight, as we show in Section 5. (When α > 3, the trivial algorithm runs in linear
time because

∑
v d2

v = O(n).)

Corollary 1.3. Suppose a degree sequence d (with largest term <
√

m/2) satisfies a
power law with exponent α ∈ (2, 3). Then the expected running time of MinBucket of
ECM(d) is asymptotically better than the trivial algorithm, and is linear when α > 7/3.

1.2. Making sense of Theorem 1.1

First, as a sanity check, let us actually show that Theorem 1.1 beats the trivial bound,∑
v d2

v . This is a direct application of Hölder’s inequality for conjugates p = 3 and q = 3/2.

(∑
v

d4/3
v

)3

=
(∑

v

d2/3
v · d2/3

v

)3

≤
(∑

v

d
2
3 ·3
v

)3· 1
3
(∑

v

d
2
3 · 3

2
v

)3· 2
3

= (2m)2

(∑
v

d2
v

)

Rearranging, we get m−2(
∑

v d
4/3
v )3 = O(

∑
v d2

v ), showing that our bound at least holds
the promise of being nontrivial.

Consider the uniform distribution on the vertices. As m ≥ n/2 by assumption,
we can write our running time bound as n(E[d4/3

v ])3, opposed to the trivial bound of∑
v d2

v = nE[d2
v ]. If the degree “distribution" (think of the random variable given by the

degree of a uniform random vertex) has a small 4/3-moment, the running time is small.
This can happen even though the second moment is large, and this is where MinBucket
beats the trivial algorithm. In other words, if the tail of the degree sequence is heavy, but
not too heavy, MinBucket will perform well.

And this is exactly what happens when α > 2 for power-law degree sequences.
When α > 7/3, the 4/3-moment becomes constant and the running time is linear. (It is
known that for ECM graphs over power-law degree sequences with α > 7/3, the clustering
coefficient [ratio of triangles to P2s] converges to zero [28].) We show in Section 5 that
the running time bound achieved in the following corollary, for power laws with α > 2,

is tight. When α ≤ 2, we know that MinBucket must be at least as fast as the trivial
algorithm Section 5, but no theoretical guarantees exist on the basis of Theorem 1.1 that
MinBucket can provide asymptotic improvements over the trivial algorithm. Intuitively,
in the case α ≤ 2 of extreme heavy-tailed degree distributions, a significant proportion
of nodes are expected to have very large degrees, which reduces the effectiveness of the
MinBucket strategy of enumerating triangles through vertices of low degree in a 3-vertex
path. For convenience, we use notation A � B to denote A = O(B) and use A � B to
denote same order A = �(B).
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Proof of Corollary 1.3. First, let us understand the trivial bound. Remember that dn is the
maximum degree.

∑
v

d2
v �

log2 dn−1∑
k=1

(n/2k(α−1))22k = n

log2 dn−1∑
k=1

2k(3−α) � n + nd3−α
n ,

if α �= 3 (for α = 3, the bound is n+n log2 dn). We can argue (Claim 3.3) that the expected
number of wedges enumerated by the trivial algorithm is �(

∑
v d2

v ). Now, for the bound of
Theorem 1.1.

m−2

(∑
v

d4/3
v

)3

�n−2

⎛
⎝log2 dn−1∑

k=1

(n/2k(α−1))24k/3

⎞
⎠

3

= n

⎛
⎝log2 dn−1∑

k=1

2k(7/3−α)

⎞
⎠

3

�n+nd7−3α
n

when dn �= 7/3 (for α = 7/3, the bound is n + n log2 dn). Regardless of dn, if α > 7/3,
then the running time of MinBucket is linear. Whenever α ∈ (2, 3), 7 − 3α < 3 − α, and
MinBucket is asymptotically faster than a trivial enumeration. �

1.3. Significance of Theorem 1.1

Theorem 1.1 connects the running time of a commonly used algorithm to the norms
of the degree sequences, a well-studied property of real graphs. So this important property
of heavy-tails in real graphs allows for the algorithmic benefit of MinBucket . We have
discovered that for a fairly standard graph model inspired by real degree distributions,
MinBucket is very efficient.

We think of this theorem as a proof of concept: theoretically showing that a common
property of real-world inputs allows for the efficient performance of a simple heuristic.
Because of our distributional assumptions as well as bounds on α, we agree with the
(skeptical) reader that this does not fully explain why MinBucket works in the real
world.1 Nonetheless, we believe that we are making progress toward that, especially for a
question that is quite difficult to formalize. After all, there is hardly any consensus, in the
social networks community, on what real graphs look like.

But the notion that distinctive properties of real-world graphs can be used to prove
efficiency of simple algorithms is a useful way of thinking. This is one direction to follow
for going beyond worst-case analysis. Our aim, here, is not to design better algorithms for
triangle enumeration, but to give a theoretical argument for why current algorithms do well.

The proof is obtained (as expected) through various probabilistic arguments bounding
the sizes of the different buckets. The ECM, although easy to implement and clean to
define, creates some niggling problems for analysis of algorithms. The edges are not truly
independent of each other, and we have to take care of these weak dependencies.

Why the 4/3-norm? Indeed, that is one of the most surprising features of this result
(especially since the bound is tight for power laws of α > 2). As we bound the buckets
sizes and make sense of the various expressions, the total running time is expressed as a
sum of various degree terms. Using appropriate approximations, it tends to rearrange into
norms of the degree sequence. Our proof goes over two sections. In Section 3, we give
various probabilistic calculations for the degree behavior in [32, (Table 1)], which set the

1As the astute reader would have noticed, our title is a question, not a statement.
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stage for the run time accounting. In Section 4, we start with bounding bucket sizes and
finally get to the 4/3-moment. In Section 5, we show that bounds achieved in the proof of
Corollary 1.3 are tight. This is mostly a matter of using the tools of the previous sections. In
Section 6.1, we give a tighter analysis, which gives an explicit expression for strong
upper bounds on running time, and in Section 6 we experimentally show that these more
careful bounds closely approximate the expected runtime of ECM graphs, with runtime
constants under 1 for graphs up to 80 M nodes.

There is a related issue of how many triangles to expect in our random graph model as
a function of the power-law slope. An answer can be provided that resembles those found in
other studies with alternative random graph models having power-law degree distributions.
For the ECM model, here, with a power-law slope α, the expected number of triangles
is O(nd7−3α

n ) if α < 2, O(nd3−α
n ) if 2 < α < 3 and O(1) if α > 3. This is similar, for

example, to findings of [32, (Table 1)] using a different model. That is, the expected number
of triangles diverges in the range 2 < α < 3 commonly observed in real-world networks
(e.g., at a rate involving d3−α

n ) and converges for lighter-tail power laws with α > 3.

2. RELATED WORK

The idea of using some sort of degree binning, orienting edges, or thresholding for
finding and enumerating triangles has been used in many studies. Bounds for a sequential
version of MinBucket using the degeneracy of a graph have been given by [13]. This
does not give bounds for MinBucket, although their algorithm is similar in spirit. Using
degree thresholding and matrix multiplication ideas from [22], [2] find triangles in O(m1.41)
Acyclic orientations for linear time triangle enumeration in planar graphs are used by [14].
As shown by [36], fast algorithms for weighted triangle enumeration lead to remarkable
consequences, such as faster all-pairs shortest paths. In the work most closely related to
this paper, [23] discusses various triangle finding algorithms, and also focuses on power-
law graphs. He shows the trivial bound of O(mn1/α) when the power law exponent is α.
Essentially, the maximum degree is n1/α and that directly gives a bound on the number of
P2s.

MinBucket has received attention from various experimental studies: [34] perform
an experimental study of many algorithms, including a sequential version of MinBucket,
which they show to be quite efficient; [17] specifically describes MinBucket in the context
of Map-Reduce; [33] do many experiments on real graphs in Map-Reduce and show major
speedups (a few orders of magnitude) for MinBucket over the trivial enumeration; and
[35] gives a good survey of various methods used in practice for triangle counting and
estimation.

Explicit triangle enumerations have been used for various applications on large
graphs; [21] use triangle enumeration for a graph-based approach for solving systems
of geometric constraints, and [7] touch every triangle as part of their community detection
algorithm for large graphs.

Configuration models for generating random graphs with given degree sequences
have a long history. Using this model to count graphs with a given degree sequence has
been studied [4], as well as the connectivity of these graphs [38], and [25, 26] have studied
various properties such as the largest connected component of this graph distribution.
Physicists studying complex networks have also paid attention to this model [29], and [9]
show that the simple graph generated by the ECM asymptotically matches the desired degree
sequence. A model for power-law graphs, where edge (u, v) is independently inserted with
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probability dudv/2m [1], was studied for more general degree sequences in subsequent
work by [15, 16]; [24] independently discuss this model. Most of this work focuses on
eigenvalues and average distances in these graphs. An excellent survey of these models,
their similarities, and applications is given by [28].

3. DEGREE BEHAVIOR OF ECM(D)

We fix a degree sequence d and focus on the distribution ECM(d). All expectations
and probabilities are over this distribution. Because of dependencies in the ECM we will
need to formalize our arguments carefully. We first state a general lemma giving a one-sided
tail bound for dependent random variables with special conditional properties. The proof
is in Appendix A.

Lemma 3.1. Let Y1, Y2, . . . , Yk be independent random variables, and Xi =
fi(Y1, Y2, . . . , Yi) be 0–1 random variables. Let α ∈ [0, 1]. Suppose Pr[X1 = 1] ≥ α

and Pr[Xi = 1|Y1, Y2, . . . , Yi−1] ≥ α for all i. Then, Pr[
∑k

i=1 Xi < αkδ] < exp(−αk(1 −
δ)2/2) for any δ ∈ (0, 1).

We now prove a tail bound on degrees of vertices; the probability that the degree
of vertex v deviates by a constant factor of dv is exp(−�(dv)). Let β, β ′, δ, δ′ denote
sufficiently small constants.

Before we proceed with our tail bounds, we describe a process to construct the random
matching of stubs. We are interested in a particular vertex v. Order the stubs such that the
dv v-stubs are in the beginning; the remaining stubs are ordered arbitrarily. We start with
the first stub and match to a uniform random stub (other than itself). We then take the next
unmatched stub, according to the order, and match to a uniform random unmatched stub.
And so on and so forth. The final connections are clearly dependent, though the choice
among unmatched stubs is done independently. This is formalized as follows. Let Yi be an
independent uniform random integer in [1, 2m − 2(i − 1) − 1]. This represents the choice
at the ith step, since in the ith step, we have exactly 2m − 2(i − 1) − 1 choices. Imagine
that we first draw these independent Yi’s. Then we deterministically construct the matching
on the basis of these numbers. (So the first stub is connected to the Y1st stub, the second
unmatched stub is connected to the Y2nd unmatched stub, etc.)

Lemma 3.2. Assume dn <
√

m/2. Let Dv be the random variable denoting the degree
of v in the resulting graph. There exist sufficiently small constants β, β ′ ∈ (0, 1), such
that Pr[Dv < β ′dv] < exp(−βdv), holding true even when allowing for any integer
dv ≥ 0.

Proof. Suppose dv > 1. We again order the stubs so that the dv v-stubs are in the
beginning. Let Xj be the indicator random variable for the j th matching forming a new
edge with v. Note that

∑�dv/2	
j=1 Xj ≤ Dv . Observe that Xj is a function of Y1, Y2, . . . , Yj .

Consider any Y1, Y2, . . . , Yj−1 and suppose the matchings created by these variables link
to vertices v0 = v, v1, v2, . . . , vj−1 (distinct) such that there are nj links to vertex vj such
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that
∑j−1

i=0 ni = (j − 1). Then, for j = 1, . . . , �dv/2	,

E[Xj |Y1, Y2, . . . , Yj−1] ≥ 1 − (dv − j − n0) +∑
1≤i≤j−1;ni �=0(dvi

− ni)

2m − 2(j − 1) − 1

≥ 1 − −2(j − 1) − 1 +∑j−1
i=0 dvi

2m − 2(j − 1) − 1

≥ 1 −
∑j−1

i=0 dvi

2m
.

Note that
∑j−1

i=0 dvi
≤ (

√
m/2)2 = m/4 by the bound on the maximum degree, so we

may bound E[Xj |Y1, Y2, . . . , Yj−1] ≥ 3/4. By Lemma 3.1 (setting δ = 2/3 and bounding
αk > dv/4),

Pr[Dv < dv/8] ≤ Pr

⎡
⎣�dv/2	∑

j=1

Xj < dv/8

⎤
⎦ ≤ Pr

⎡
⎣�dv/2	∑

j=1

Xj < �dv/2	/2

⎤
⎦

< exp(−dv(1/3)2/8).

This suffices to prove the trivial bound for the trivial algorithm.

Claim 3.3. The expected number of wedges enumerated by the trivial algorithm is
�(
∑

v d2
v ).

Proof. The expected number of wedges enumerated is �(
∑

v D2
v), where Dv is the actual

degree of v. Using Lemma 3.2, E[D2
v] = �(d2

v ).

We will need the following basic claim about the joint probability of two edges.

Claim 3.4. Let v,w,w′ be three distinct vertices. The probability that edges (v,w) and
(v,w′) are present in the final graph is, at most, d2

v dwdw′/m2.

Proof. Assume dv > 1. Let Cv,w be the indicator random variable for edge (v,w) being
present (likewise, define Cv,w′). Label the stubs of each vertex as sv

1 , . . . , sv
dv

; sw
1 , . . . , sw

dw
;

and sw′
1 , . . . , sw′

dw′ . Let Csv
i ,sw

j
be the indicator random variable for the edge being present be-

tween stubs sv
i and sw

j (likewise, define Csv
i ,sw′

j
). Then, the event {Cv,wCv,w′ = 1} that edges

(v,w) and (v,w′) are present is a subset of the event ∪1≤i �=j≤dv
∪dw

k=1∪dw′
�=1{Csv

i ,sw
k
Csv

j ,sw′
�

= 1}.
Hence,

Pr[Cv,wCv,w′ = 1] ≤
∑

1≤i �=j≤dv

dw∑
k=1

dw′∑
�=1

Pr[Csv
i ,sw

k
Csv

j ,sw′
�

= 1].

Fix 1 ≤ i �= j ≤ dv , 1 ≤ k ≤ dw and 1 ≤ � ≤ dw′ and order stubs sv
i , sv

j first in
the ECM wiring. Then, Pr[Csv

i ,sw
k
Csv

j ,sw′
�

= 1] = Pr[Csv
i ,sw

k
= 1] Pr[Csv

j ,sw′
�

= 1|Csv
i ,sw

k
= 1],
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where Pr[Csv
i ,sw

k
= 1] = [2m − 1]−1 and Pr[Csv

j ,sw′
�

= 1|Csv
i ,sw

k
= 1] = [2m − 3]−1. Hence,

Pr[Cv,wCv,w′ = 1] ≤ dv(dv − 1)dwdw′/m2,

using (2m − 1)(2m − 3) ≥ m2 when m ≥ 3.

4. GETTING THE 4/3 MOMENT

We will use a series of claims to express the running time of MinBucket in a
convenient form. For vertex v, let Xv be the random variable denoting the number of edges
in v’s bin. The expected running time is, at most, E[

∑
v Xv(Xv − 1)]. This is because the

number of wedges in each bin is
(
Xv

2

) ≤ X2
v − Xv .

We further break Xv into the sum
∑

w Yv,w, where Yv,w is the indicator for edge
(v,w), being in v’s bin. As mentioned earlier, Cv,w is the indicator for edge (v,w) being
present. Note that Yv,w ≤ Cv,w, since (v,w) can be in v’s bin only if it actually appears as
an edge.

We list out some bounds on expectations. Only the second really uses the binning of
MinBucket .

Claim 4.1. Consider vertices v,w,w′ (w �= w′).
• E[Yv,wYv,w′ ] ≤ d2

v dwdw′/m2.
• There exist sufficient small constants δ, δ′ ∈ (0, 1) such that: if dw < δdv then

E[Yv,wYv,w′ ] ≤ 2 exp(−δ′dv)d2
v dwdw′/m2.

Proof. We use the trivial bound of Yv,wYv,w′ ≤ Cv,wCv,w′ . By Claim 3.4, E[Yv,wYv,w′ ] ≤
E[Cv,wCv,w′] ≤ d2

v dwdw′/m2.
Now, for the interesting bound: The quantity E[Yv,wYv,w′ ] is the probability that both

Yv,w and Yv,w′ are 1. For this to happen, we definitely require both (v,w) and (v,w′) to be
present as edges. Call this event E . We also require (at the very least) the degree of v to be
at most the degree of w (otherwise the edge (v,w) will not be put in v’s bin.) Call this event
F . If Dv,Dw denote the degrees of v and w, note that Dw ≤ dw < δdv , implying event F
is contained in the event {Dv < δdv} when dw < δdv . Hence, the event Yv,wYv,w′ = 1 is
contained in E ∩ {Dv < δdv}. Assume dv > 2, dw > 0, dw′ > 0 or else E[Yv,wYv,w′] = 0
holds when δ < 1/2 by the assumption dw < δdv .

As in the proof of Claim 3.4, let Csv
i ,sw

j
be the indicator random variable for the edge

being present between stubs sv
i and sw

j of vertices v,w (and analogously define Csv
i ,sw′

j
).

Then, E is contained in ∪1≤i �=j≤dv
∪dw

k=1 ∪dw′
�=1{Csv

i ,sw
k
Csv

j ,sw′
�

= 1} so that

Pr[Yv,wYv,w′ = 1] ≤ Pr[E,Dv < δdv]

≤
∑

1≤i �=j≤dv

dw∑
k=1

dw′∑
�=1

Pr[Csv
i ,sw

k
Csv

j ,sw′
�

= 1,Dv < δdv]

=
∑

1≤i �=j≤dv

dw∑
k=1

dw′∑
�=1

Pr[Csv
i ,sw

k
Csv

j ,sw′
�

= 1] Pr[Dv < δdv|Csv
i ,sw

k
Csv

j ,sw′
�

= 1].
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Given fixed values of i, j, k, �, order stubs sv
i , sv

j first in the ECM wiring. Then,
Pr[Csv

i ,sw
k
Csv

j ,sw′
�

= 1] ≤ m−2 as in the proof of Claim 3.4. Additionally, conditioned
on Csv

i ,sw
k
Csv

j ,sw′
�

= 1, the remaining stubs form an ECM with respect to a new de-
gree sequence formed by replacing 2m, dv, dw, dw′ in the original degree sequence by
2m̃ = 2m − 4, dv − 2, dw − 1, dw′ − 1. Let D̃v denote the degree of v in the final graph
from the new degree sequence. Then, conditioned on Csv

i ,sw
k
Csv

j ,sw′
�

= 1, Dv = 2 + D̃v so
that conditional probability is bounded by

Pr[Dv < δdv|Csv
i ,sw

k
Csv

j ,sw′
�

= 1] = Pr[D̃v < δdv − 2|Csv
i ,sw

k
Csv

j ,sw′
�

= 1]

≤ Pr[D̃v < δ(dv − 2)|Csv
i ,sw

k
Csv

j ,sw′
�

= 1]

≤ 2 exp(−δ′dv),

since δ < 1. That is, Lemma 3.2 applies to D̃v with respect to the new degree sequence,
where v has degree dv − 2 and each degree in this new sequence is less than

√
m̃/2 by

assumption. The bound Pr[Yv,wYv,w′ = 1] ≤ 2 exp(−δ′dv)d2
v dwdw′/m2 then follows.

Armed with these facts, we can bound the expected number of P2s contained in a
single bucket.

Lemma 4.2. There exists a sufficiently small δ ∈ (0, 1) such that

E[Xv(Xv − 1)] = O

⎛
⎝exp(−δdv)d2

v + m−2d2
v

( ∑
w:dw≥δdv

dw

)2
⎞
⎠ .

Proof. We will write out

X2
v =

(∑
w

Yv,w

)2

=
∑
w

Y 2
v,w +

∑
w

∑
w′ �=w

Yv,wYv,w′ ,

where
∑

w Y 2
v,w = ∑

w Yv,w = Xv as each Yv,w is a 0–1 variable. Hence,

E[Xv(Xv − 1)] =
∑
w

∑
w′ �=w

E[Yv,wYv,w′ ] ≤
∑
w:

dw≥δdv

∑
w �=w′:

dw′≥δdv

E[Yv,wYv,w′ ]

+
∑
w:

dw<δdv

∑
w′ �=w

E[Yv,wYv,w′ ] +
∑
w′:

dw′<δdv

∑
w �=w′

E[Yv,wYv,w′]

=
∑
w:

dw≥δdv

∑
w �=w′:

dw′ ≥δdv

E[Yv,wYv,w′ ] + 2
∑
w:

dw<δdv

∑
w′ �=w

E[Yv,wYv,w′]

≤ d2
v

m2

( ∑
w:dw≥δdv

dw

)2

+ 2
∑
w:

dw<δdv

∑
w′ �=w

E[Yv,wYv,w′],
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by splitting the sums (for a given δ ∈ (0, 1) to be specified next) into cases, dw ≥ δdv and
dw < δdv , and using the trivial bound of Claim 4.1 for the first quantity. We satisfy the
conditions to use the second part of Claim 4.1 as∑

w:
dw<δdv

∑
w′ �=w

E[Yv,wYv,w′] ≤ 2
∑
w:

dw<δdv

∑
w′ �=w

exp(−δdv)d2
v dwdw′/m2

≤ 8 exp(−δdv)d2
v ,

where
∑n

i=1 di = 2m.

With this bound for E[Xv(Xv − 1)], we are ready to prove Theorem 1.1.

Theorem 4.3. E[
∑

v Xv(Xv − 1)] = O(n + m−2(
∑n

i=1 d
4/3
i )3).

Proof. We use linearity of expectation and sum the bound in Lemma 4.2. Note that
exp(−δdv)d2

v is a decreasing function of dv and is, hence, O(1). Hence,

E

[∑
v

Xv(Xv − 1)

]
� n + m−2

∑
v

d2
v

( ∑
w:dw≥δdv

dw

)2

= n + m−2
∑

v

∑
w:dw≥δdv

∑
w′:dw′ ≥δdv

d2
v dwdw′ .

This is the moment where the 4/3 moment will appear. Since dw ≥ δdv and dw′ ≥
δdv , d

2/3
v ≤ δ−2/3d

1/3
w d

1/3
w′ . Therefore, d2

v dwdw′ = d
4/3
v d

2/3
v dwdw′ ≤ δ−2/3(dvdwdw′ )4/3.

Wrapping it up,

m−2
∑

v

∑
w:dw≥δdv

∑
w′:dw′ ≥δdv

d2
v dwdw′ � m−2

∑
v

∑
w:dw≥δdv

∑
w′:dw′ ≥δdv

(dvdwdw′ )4/3

� m−2

(∑
v

d4/3
v

)3

.

5. PROVING TIGHTNESS

We show that the bound achieved by Theorem 1.1 is tight for power laws with α > 2.
This shows that the bounds given in the proof of Corollary 1.3 are tight. The proof, as
expected, goes by reversing most of the inequalities given earlier. For convenience, we will
assume for the lower bound that dn <

√
m/4, instead of the

√
m/2 used for the upper

bound. This makes for cleaner technical arguments.

Claim 5.1. Let d be a power law-degree sequence with α ∈ (2, 7/3) with dn <
√

m/4.
Then, the expected number of P2s enumerated by MinBucket over ECM(d) is �(nd7−3α

n ).

We first need a technical claim to give a lower bound for probabilities of edges falling
in a bucket.
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Claim 5.2. Let dv > 3. Consider vertices v,w,w′ (w �= w′) and let c be a sufficiently
large constant. If min(dw, dw′ ) > cdv , then E[Yv,wYv,w′] = �(d2

v dwdw′/m2).

Proof. The random variable Yv,wYv,w′ is 1 if (v,w), (v,w′) are edges and the degrees of
w and w′ are less than that of v. As before, we will start the matching process by matching
stubs of v. We partition the stubs into two groups denoted by Bw and Bw′ and start by
matching stubs in Bw. We set |Bw| = �dv/3	. What is the probability that a stub in Bw

connects with a w-stub? This is at least 1 − (1 − dw/2m)�dv/3	 = �(dvdw/m).
Condition on any matching of the stubs in Bw. What is the probability that a stub in

Bw′ matches with a w′-stub? Because min(|Bw′ |, dw′ ) ≥ 2|Bw|, this probability is at least
1 − (1 − dw′/4m)�dv/3	 = �(dvdw′/m).

Now condition on any matching of the v-stubs. The number of unmatched stubs
connected to w is at least dw/2 (similarly for w′). The remaining stubs connect according
to a standard configuration model. For the remaining degree sequence, the total number
of stubs is 2m̃ = 2m − 2dv . For sufficiently large m, dn ≤ √

m/4 ≤ √
m̃/2. Hence, we

can use Lemma 3.2 (and a union bound) to argue that the probability that the final degrees
of w and w′ are at least dv is �(1). Multiplying all the bounds together, the probability
Yv,wYv,w′ = 1 is �(d2

v dwdw′/m2).

We prove Claim 5.1.

Proof. (of Claim 5.1) Note that when α > 2, then m = O(n). We start with the arguments
in the proof of Lemma 4.2 and we use notation A � B to denote A = �(B). Applying
Claim 5.2 for vertex v such that dv > 3,

E[Xv(Xv − 1)] =
∑
w

∑
w′ �=w

E[Yv,wYv,w′] ≥
∑
w:

dw≥cdv

∑
w �=w′:

dw′ ≥cdv

E[Yv,wYv,w′]

� m−2d2
v

∑
w:

dw≥cdv

∑
w �=w′:

dw′ ≥cdv

dwdw′

≥ m−2d2
v

⎛
⎜⎝ ∑

w:
dw≥cdv

dw

⎞
⎟⎠

2

− m−2d2
v

∑
w

d2
w.

The latter part, summed over all v is, at most,

m−2

(∑
v

d2
v

)2

≤ m−2

(
max

v
dv

∑
v

dv

)2

� m.

Now we focus on the former part. Choose v so that cdv ≤ dn/2, and let 2r be the largest
power of 2 greater than cdv . (Note that r ≤ log2 dn − 1.) We bound

∑
w:dw≥cdv

dw ≥∑
w:dw≥2r dw � ∑log2 dn−1

k=r 2kn/2k(α−1). This is
∑log2 dn−1

k=r n/2k(α−2), which is convergent
when α > 2. Hence, it is at least �(n2−r(α−2)) = �(nd−(α−2)

v ).
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We sum over all (appropriate v).

∑
v:3<dv≤dn/2c

m−2d2
v

⎛
⎜⎝ ∑

w:
dw≥cdv

dw

⎞
⎟⎠

2

� (n/m)2
∑

v:3<dv≤dn/2c

d2
v d−(2α−4)

v

= (n/m)2
∑

v:3<dv≤dn/2c

d6−2α
v

� (n/m)2
�log2 n−log2(2c)	∑

k=2

n2k(7−3α).

When α < 7/3, the sum is divergent. Noting that m = �(n), we bound by �(nd7−3α
n ).

Overall, we lower bound the running time MinBucket by
∑

v:3<dv≤dn/2c E[Xv(Xv − 1)],
which is �(nd7−3α

n − m). For α < 7/3, this is �(nd7−3α
n ), matching the upper bound in

Corollary 1.3.

6. EMPIRICAL ANALYSIS

We experimentally show that our theoretical analysis does a reasonable job of cap-
turing the expected performance of MinBucket on ECM graphs. As is, Theorem 1.1 is
asymptotic and cannot be used for predicting empirical performance. For this reason, we
choose a specific class of degree distributions and get a tighter theoretical analysis.

6.1. Tighter Bounds on the Running Time

Under a specific choice of degrees, we can pin down the running time of MinBucket
up to lower order terms. Rather than starting with an arbitrary degree sequence, we draw
the degree for each vertex independently at random from a reference degree distribution
D, given by probability density function (pdf) f . Specifically, f (d) is the probability that a
node draws degree value d for a given integer d ∈ [0,∞). After nodes draw degree values,
the rest of the ECM construction proceeds as described in Section 1.1.

Formally, let Dn be the distribution with support {1, 2, . . . , �√n/ log2 n	}, where
the probability of d is proportional to f (d). Note that we do not allow a degree of 0 and
cap the max degree at

√
n/ log2 n (instead of

√
n). These are mostly conveniences for a

cleaner proof. We pick the degree sequence by taking n i.i.d. draws from Dn. So, the degree
sequence d is distributed according to the product Dn

n . Then, we generate an ECM with d.
For convenience, we denote 1 − 1/

∑
d≤n f (d) by γn. Note that γn → 0, as n → ∞. The

probability of d under Dn is f (d)(1 − γn). We use m = ∑
v dv/2 to denote the number of

edges in the multigraph and heavily use m ≥ n/2.
Our analysis assumes that when an edge joins two vertices of the same degree,

the edge is placed in the bucket for both vertices. Thus, we slightly overcount the work
for MinBucket . Let Xi,n be the size of the bucket for an arbitrary node i in a graph
generated by ECM with n nodes. We wish to bound the expected triangle-searching work
E[
∑n

i=1

(
Xi,n

2

)
] in an ECM graph, as the number of nodes n → ∞. We denote the rth

moment, r > 0, of the reference degree distribution f as E[dr ] = ∑∞
t=1 t r · f (t).
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Figure 1 Experimental results with n-node ECM graphs drawn from a truncated power-law distribution with
exponent α = 2.4. In (a) we see the work predicted by Theorem 6.1 and the average work observed in ten Monte
Carlo trials. In (b) we show that the fraction of edges erased in the ECM process is tiny and shrinking.

Theorem 6.1. Fix any n and a degree distribution D such that E[d] and E[d4/3] are finite.
Then

lim
n→∞

1

n
E

[
n∑

i=1

(
Xi,n

2

)]
= 1

2(E[d])2

∞∑
t1=1

∞∑
t2=t1

∞∑
t3=t1

t1(t1 − 1)t2t3f (t1)f (t2)f (t3) ∈ (0,∞).

The triple sum in Theorem 6.1 represents an expectation E[IZ1(Z1 − 1)Z2Z3],
where Z1, Z2, Z3 are three independent random variables with distribution f and I is the
indicator function of the event min{Z2, Z3} ≥ Z1. The proof is basically analogous to that
of Theorem 1.1, but extremely technical because of the additional randomness in the degree
sequence. We do not present the proof here because of space (and readability) issues, but
we refer to the tech report version of this article [6].

6.2. Experimental Results

Using the distribution described in Section 6.1, we construct ECM graphs
with power-law degree distributions, and truncate degrees at

√
n. We choose α = 2.4

(where the 4/3 moment is finite). Figure 1(a) shows that the theoretical work predicted
by Theorem 6.1 bounds the observed work for increasing graph sizes. Additionally, as
shown in Figure 1(b), the effect of erasure on the underlying power-law distribution is
small. For example, when n = 4 million vertices, Pearson’s method of moments [30]
estimates the power-law exponent as 2.396 from data after erasure.
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APPENDIX A PROOF OF LEMMA 3.1

Proof. Consider the sequence X′
1, X

′
2, . . . , X

′
k of i.i.d. Bernoulli random variables with

E[X′
i] = α. It suffices to show that, for any t ∈ R, Pr[

∑k
i=1 Xi < t] ≤ Pr[

∑k
i=1 X′

i < t].
Given this, we apply a multiplicative Chernoff bound (Theorem 4.2 of [27]) for

∑k
i=1 X′

i

with μ = αk to obtain Pr[
∑k

i=1 Xi < αkδ] < exp(−α(1 − δ)2/2). Assume for any t and
some index j , pt ≡ Pr[

∑j

i=1 Xi < t] ≤ Pr[
∑j

i=1 X′
i < t] ≡ p′

t holds; by assumption, this
is true for j = 1. We prove this statement holds for j + 1 and given t . Let I(A) denote the
indicator function of event A ≡ ∑j

i=1 Xi ∈ [t − 1, t). Because Xi is a 0–1 variable, we get
Pr[
∑j+1

i=1 Xi < t] = pt−1 + Pr[A,Xj+1 = 0] where

Pr[A,Xj+1 = 0] = E{E[I(A)I(Xj+1 = 0)|Y1, . . . , Yj ]}
= E{I(A)E[I(Xj+1 = 0)|Y1, . . . , Yj ]}
≤ E{I(A)}(1 − α) = (pt − pt−1)(1 − α)
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using I(A) as a constant in the conditional expectation, that E{I(A)} = Pr(A) = pt − pt−1,
and that Pr[Xj+1 = 0|Y1, . . . , Yj ] ≤ 1 − α by assumption. The above gives

Pr

[
j+1∑
i=1

Xi < t

]
≤ pt−1 + (pt − pt−1)(1 − α) = pt−1α + pt (1 − α)

≤ p′
t−1α + p′

t (1 − α) (using induction hypothesis and α ∈ [0, 1])

= p′
t−1 + (p′

t − p′
t−1)(1 − α) = Pr

[
j+1∑
i=1

X′
i < t

]
.


