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Abstract This article addresses the matter of inequality in network formation games. We
employ a quantity that we are calling the Nash Inequality Ratio (NIR), defined as the maximal
ratio between the highest and lowest costs incurred to individual agents in a Nash equilibrium
strategy, to characterize the extent to which inequality is possible in equilibrium. We give tight
upper bounds on the NIR for the network formation games of Fabrikant et al. [14] and Ehsani
et al. [13]. With respect to the relationship between equality and social efficiency, we show
that, contrary to common expectations, efficiency does not necessarily come at the expense of
increased inequality.

1. INTRODUCTION

Noncooperative game theory uses the concept of equilibria to capture the idea that,
in a competitive world, rational agents will maneuver themselves to a fixed point from
which no further maneuvering will yield additional benefits (e.g., a lower cost). The most
ubiquitous equilibrium concept is the Nash equilibrium, which is satisfied when no indi-
vidual agent can achieve a lower cost by changing its strategy given that the strategies
of every other agent remain unchanged. In a Nash equilibrium there can exist a dispar-
ity between the costs incurred by individual agents, with the “more fortunate” agents
subjected to lower costs than the “less fortunate” ones. In this manuscript, we investi-
gate the Nash Inequality Ratio (NIR), defined as the maximum value of the ratio be-
tween the highest and lowest costs found within a single Nash equilibrium, to determine
the extent to which cost disparity can arise between pairs of agents in an equilibrium
outcome.

Recent years have witnessed widespread, growing concerns over economic inequality
(see, for example, [9, 31, 29]). Yet, within the the algorithmic game theory community—a
field of study sitting at the intersection of computer science, economics, and game theory—
inequality has received very little attention, as evidenced by the nonexistence of a standard
vernacular with which to discuss bounds of the sort captured by the NIR. The NIR expresses,
in a natural way, a fundamental property of a strategic scenario, akin to the well-known
metrics used to characterize other qualities of equilibria such as the Price of Anarchy (PoA)
[22, 23] and the Price of Stability (PoS) [3].
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In this manuscript we analyze inequality in network formation games. Network
formation games model the formation of network structures by and between a collection
of strategic, self-interested individuals or agents. In these games, connectivity is deemed
to be desirable though costly, and it is up to the agents to reconcile the gains they achieve
through additional connectivity (e.g., access to information, the ability to communicate and
coordinate, etc.) with the costs or resource limitations that limit the number of links that
they can afford to create.

We focus on two network formation games: the Undirected Connections (UC) game
[14] and the Undirected Bounded Budget Connections (UBBC) game [13]. In both games,
there is a set N = {1, . . . , n} of strategic agents. Each agent i ∈ N selects a linking strategy
si ⊆ N \ {i} that identifies a subset of other agents to which they will build links. The joint
strategy s = (s1, . . . , sn) induces an undirected network Gs = (N,Es) in which the agents
themselves are vertices and the edge set Es is the union of every agent’s linking strategies.
In both games, agents incur a usage cost that is defined for each i ∈ N to be the sum of
distances between i and every other j ∈ N \ {i} in Gs . The two games differ in how the
cost of building edges is accounted for: in the UC game, each agent i incurs an additional
construction cost, defined to be α times the number of edges that i builds; and in the UBBC
game, each agent i is endowed with an edge budget, ki > 0, determining the maximum
number of edges that i can build.

Our first results are presented in Section 3 where we establish tight upper bounds on
the NIR for these two network formation games. For the UC game, we establish bounds
parameterized on the cost of building links, α, which is assumed to be a constant. In
particular, when links are inexpensive (α < 1), we find that the NIR is at most 1 + α < 2;
and when links are expensive (α ≥ 1), the NIR is asymptotically bounded (as the number
of agents n → ∞) by max{2, (1 + α)/2}. Then, for the UBBC game, we prove that the
NIR is bounded by the constant 2. We show that this bound is asymptotically tight for
every positive budget allocation—including those that endow different budgets to different
agents.

With these results established, in Section 4 we examine the relationships between
efficiency and (in)equality. Here we focus on Nash equilibrium strategies that are also
efficient (i.e., minimize the social cost). In both games we find that this relationship is
largely dependent on the availability of resources (edges). In particular, we find that when
resources are scarce (that is, when edges are expensive in the UC model and when budgets
are small in the UBBC model), the two games behave quite differently from each other.
In the scarce regime for the UBBC game, no efficient Nash equilibrium strategies achieve
cost equality, and some actually maximize the inequality ratio (achieving the NIR upper
bound established in Section 3). To the contrary, in the scarce regime for the UC game,
there are some efficient Nash equilibrium strategies with egalitarian costs and others with
maximal inequality. These results demonstrate that the relationship between equality, ef-
ficiency, and equilibrium is entirely model specific and varies across network formation
games.

The research agenda initiated in this manuscript—using the NIR to characterize the
relationship between equality, efficiency, and equilibrium—opens an avenue for future
research that involves the bounding of these quantities in different games. Further, we hope
that this work stimulates interest in examining questions of inequality and equilibrium more
broadly.
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Section 5 concludes with closing remarks. Finally, to facilitate the flow of the main
ideas, tangential proofs are deferred to the Appendix.

2. PRELIMINARIES

In this section, we formally define the Nash Inequality Ratio (Section 2.1) and the
network formation games (Section 2.2) on which the remainder of the article is focused.

2.1. Nash Inequality Ratio

Studies of economic inequality have spawned a number of metrics that aim to quantify
the level of inequality in a given system, the most well-known being the Gini coefficient
[15] used to quantify the level of inequality in the distribution of utility (wealth) across
a population of individuals. The related topic of fairness has also received considerable
attention in the game theory literature, particularly with respect to mechanism design [33,
10, 21] in which the goal is to develop allocation mechanisms that achieve various notions
of equity among the parties involved. Roughgarden [30] proposed a metric quantifying
unfairness in the context of noncooperative routing games as the maximum ratio between
an agent’s cost (i.e., latency of a flow path) in a socially optimal outcome and that of a Nash
equilibrium outcome.

In this manuscript, we put forward the NIR as a simple metric that bounds, in a natural
way, the extent that inequality between agents is supported in Nash equilibrium outcomes.

Consider a game � involving a set N = {1, . . . , n} of players/agents where, for
each agent i ∈ N , Si specifies i’s strategy space. A joint strategy s = (s1, . . . , sn) ∈
S1 × · · · × Sn = S yields an outcome, and each agent i incurs a cost ci(s) that is a function
of the joint strategy.

Given a joint strategy s, let μ = argmini∈N ci(s) denote an agent that incurs a minimal
cost, and χ = argmaxi∈N ci(s) denote an agent that incurs the highest cost. The inequality
ratio (IR) for the joint strategy s is defined as:

IR(s) = cχ (s)

cμ(s)
= maxi∈N ci(s)

minj∈N cj (s)
.

That is, the IR of a strategy s is the maximal cost ratio between any pair of agents.
Recall that a joint strategy s is a Nash equilibrium if, for every agent i ∈ N and every

s ′
i ∈ Si , we have

ci(si, s−i) ≤ ci

(
s ′
i , s−i

)
,

where s−i is shorthand for the joint strategy of every agent except i. In a Nash equilibrium,
no agent stands to lower its cost through a unilateral strategy update. Let SNE ⊆ S denote
the set of all Nash equilibrium. The NIR is defined to be the greatest IR among all Nash
equilibrium strategies:

NIR(�) = max
s∈SNE

IR(s). (2.1)
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Note that the NIR is kind of a “max-max” quantity, in that the NIR of a game is the
maximum inequality ratio among all Nash equilibrium strategies for that game, and each
inequality ratio itself is a maximal quantity with respect to a particular strategy.

Finally, by definition we have IR(s) ≥ 1 for every strategy s ∈ S. A strategy s is
called egalitarian if IR(s) = 1.

2.2. Network Formation Games

Network formation games model the creation of networks by rational and self-
interested agents strategically building edges between one another. In this section, we
describe the two specific network formation games on which we base the inequality anal-
ysis presented in this article: the Undirected Connections game (Section 2.2.1) and the
Undirected Bounded Budget Connections game (Section 2.2.2). For a comprehensive intro-
duction to network formation games the reader is referred to the surveys of [18, 19, 16, 32].

Questions regarding inequality in network formation games have received very little
attention in the literature. To the best of our knowledge, the only study that looks explicitly
at inequality in noncooperative network formation games is found in [17], who analyze
the effect of local splillovers in pairwise stable networks. The authors found that agents
with more connections and larger neighborhoods earn higher utilities than those with fewer
connections and smaller neighborhoods. The results presented in [17] show that inequality
can arise in equilibrium outcomes, but the authors do not go on to quantify the extent of
the inequality.

2.2.1. The Undirected Connections Game. The UC network formation game1

introduced by Fabrikant et al. [14] was the first network formation game to appear in
the algorithmic game theory literature.2 In addition to introducing the UC model and
establishing some basic properties of efficient and Nash equilibrium outcomes, Fabrikant
et al. establish bounds on the PoA, which have subsequently been tightened (e.g., [1, 11,
27, 25]).

The UC model, as defined by [14], is specified by a set N = {1, . . . , n} of strategic
agents and a parameter α > 0, a constant, that determines the cost of building a single edge.
The strategy space for an individual agent i ∈ N , denoted Si , consists of all possible subsets
of other agents to which i can build a direct connection; i.e., Si ⊆ P(N \ {i}).3 A (pure)
strategy for agent i, denoted si ∈ Si , is a specific subset of other agents with which i wishes
to establish links. A joint strategy s = (s1, s2, . . . , sn), representing the strategy selections
of every agent in N , induces an undirected network Gs = (N,Es), wherein the agents
themselves are present as vertices and the edge set is defined to be Es = {{i, j} : j ∈ si}.
Because an undirected edge {i, j} is present in Gs if either j ∈ si or i ∈ sj , edge formation
in the UC model is said to be unilateral.

Each agent i incurs a cost that is a function of both its own strategy, si , and the joint
strategy of every other agent, s−i . This cost for agent i consists of both a usage cost, di(s),
and a creation cost, bi(s). The usage cost is defined to be the sum of distances between i

and every other agent j ; di(s) = ∑
j∈N �Gs

(i, j ) where �Gs
(i, j ) denotes the length of the

1The name Undirected Connections is our own choosing in order to reinforce the nature of the
game.

2We note that earlier work on network formation games appeared in the economics literature—
cf. [4, 20, 5].

3We use the notation P(X) to denote the power set of a set X; i.e., the set of all subsets of X.
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shortest path between nodes i and j in the graph Gs (or ∞ if no such path exists).4 The
creation cost is defined to be linear in the number of edges i contributes to the network’s
construction; specifically, bi(s) = α · |si | where |si | conveys the number of edges that i

builds in the network and α ≥ 0 is a constant, specified as a game parameter. Hence, the
cost to an agent i ∈ N given the joint strategy profile s = (si, s−i) is

ci(s) = bi(s) + di(s) = α|si | +
∑
j∈N

�Gs
(i, j ). (2.2)

The social cost is defined as the sum of the agents’ individual costs;

C(s) =
∑
i∈N

ci(s). (2.3)

A strategy profile s ∈ S that minimizes (2.3) is called efficient.
Fabrikant et al. identify the topologies of efficient and Nash equilibrium strategies

for three different regimes of α, which we summarize in Proposition 2.1. These results will
play prominently in our analysis of the UC game.

Proposition 2.1. [14] Efficient and Nash equilibrium outcomes for the UC network
formation game are as follows:

1. When α < 1, the complete graph is both efficient and the only Nash equilibrium.5

2. When 1 ≤ α < 2, the complete graph is efficient but the star is the only Nash
equilibrium.6

3. When 2 ≤ α, the star is efficient and a Nash equilibrium, although there are other Nash
equilibrium outcomes as well.

2.2.2. The Undirected Bounded Budget Connections Game. The UBBC
network formation game was introduced by Ehsani et al. [13] as an undirected variant of
the Bounded Budget Connections (BBC) game of [24]. Ehsani et al. establish upper bounds
on the PoA for the UBBC game, building on the techniques developed by [2] for a related
network formation game.

As with the UC game, the UBBC game involves a set N = {1, . . . , n} of strategic
agents building edges between one another. However, in the UBBC model, each agent
i ∈ N is endowed with a budget ki > 0 that determines the maximum number of edges
the agent can create. The budgets k1, k2, . . . , kn are specified exogenously and, in general,
need not be identical. We refer to the special case when all edge budgets are identical (i.e.,
∀i ∈ N, ki = k) as uniform instances of the UBBC game.

Edge formation is unilateral, so a joint strategy s = (s1, . . . , sn) induces a network
Gs = (N,Es) with edges Es = {{i, j} : j ∈ si}, and the cost to an agent i given s is defined

4We will sometimes use the shorthand �s(·, ·) in place of �Gs
(·, ·).

5A complete graph/network refers to a network in which all pairs of nodes are directly linked
to each other.

6 A star refers to a minimally connected network in which there is one central node that is
directly linked to the remaining n − 1 nodes. In a center-sponsored star, the cost of all n − 1 edges is
borne by the center node. In a peripheral-sponsored star, each of the n − 1 peripheral agents bares
the cost of building the edge connecting them to the center node.
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to be

ci(s) = di(s) =
∑
j∈N

�Gs
(i, j ). (2.4)

The social cost for the UBBC game is defined as it is in the UC game; i.e., the sum of the
costs incurred by the individual agents,

C(s) =
∑
i∈N

ci(s).

The remainder of this section includes some simple facts regarding Nash equilibria
and efficient outcomes of the UBBC game. The first lemma is from Eshani et al. and
identifies a sufficient condition for a joint strategy to be a Nash equilibrium.

Lemma 2.2. [13] A UBBC strategy profile s = (s1, . . . , sn) that induces a network Gs

without parallel edges and a diameter of at most 2 is a Nash equilibrium.

The next two results identify properties of efficient outcomes for uniform instances
of the UBBC game. Lemma 2.3 discerns the social cost of efficient networks while Propo-
sition 2.4 shows that, for sufficiently sparse instances, efficient outcomes are necessarily
networks with a diameter of two. The proofs of Lemma 2.3 and Proposition 2.4 can be
found in the Appendix.

Lemma 2.3. The social cost of any efficient strategy profile for a uniform UBBC instance
with edge budgets k ≥ 1 is

2n(n − 1) − 2nk.

Proposition 2.4. Every uniform UBBC instance with k < (n − 1)/2 has an efficient
outcome with a diameter of 2.

3. NIR UPPER BOUNDS

This section presents our results on upper bounding the NIR for the two network
formation games. NIR upper bounds are established for the UC game in Section 3.1 (see
Theorem 3.1) and for the UBBC game in Section 3.2 (see Theorem 3.7).

3.1. The Undirected Connections Game

We establish upper bounds on the NIR for the UC game for two regimes of α: when
α < 1 and α ≥ 1. These bounds are stated in Theorem 3.1, showing that inequality is
independent of the number of agents when α is a constant. Our upper bound implies that
when α > 3, inequality scales linearly with α.

Theorem 3.1. Upper bounds on the NIR for the UC game:

1. When α < 1, the NIR is at most 1 + α < 2.
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2. When 1 ≤ α < ∞ is a constant (independent of n), the NIR is at most max{2, (1+α)/2}
in the limit as n → ∞.

We will prove the two parts of Theorem 3.1 separately in Lemma 3.2 (next) and
Lemma 3.6 (following).

Lemma 3.2. When α < 1, the NIR for the UC games is at most 1 + α < 2.

Proof. From Proposition 2.1 we know that whenever α < 1, then the only Nash equilibrium
is a complete graph, and every agent is adjacent to n − 1 other agents. In the complete
graph, the usage costs incurred by every agent is the same, and the only disparity that can
arise is due to the agents’ construction costs. In the most extreme case, the min-cost agent
does not buy any links and the max-cost agent buys m > 0 links. The inequality ratio is
therefore

(n − 1) + αm

n − 1
= 1 + αm

n − 1
≤ 1 + α,

where m can be at most n − 1 (i.e., m = n − 1 when the max-cost agent buys all of its
incident links). It is easy to see that the max-cost agent is not inclined to discard any of
its edges because doing so would increase the usage cost by 1 but of yield a savings only
α < 1 in the construction cost, resulting in a net cost increase.

Before addressing the second case of Theorem 3.1, we first need a couple of lemmas.
In Lemma 3.3, we give an expression that captures the inequality ratio for an arbitrary
Nash equilibrium of the UC game, and then show in Corollary 3.4 that this quantity is
maximized in star networks. Then, in Lemma 3.5, we bound the inequality ratio of star
network topologies.

Lemma 3.3 and Corollary 3.4 require additional notation. We refer to min-cost and
max-cost agents as μ ∈ argmini∈N ci(s) and χ ∈ argmaxi∈N ci(s), respectively. Note that, in
general, there may exist multiple min- and max-cost agents in any given Nash equilibrium,
but in the following, we assume that μ and χ refer to the same min- and max-cost agents
throughout the argument. For an agent i and a joint strategy s, let Ts(i) denote a shortest-
path tree rooted at i that is built from a breadth-first traversal of Gs beginning at node/agent
i.7 Edges of Gs that appear in Ts(i) are referred to as tree edges, and those that do not
are nontree edges. By construction, for any agent j that appears in layer k ≥ 0 of Ts(i),
it follows that �s(i, j ) = k. Also, for any agent j appearing in layer k and every nontree
edge {j, j ′}, it follows (from the construction of Ts(i)) that agent j ′ must be in layer
k′ ∈ {k − 1, k, k + 1}.

For a pair of agents i, j , let Ts(j ; i) denote the subtree of Ts(i) that is rooted at j such
that, without loss of generality, all agents j ′ that are adjacent to j in Gs and are in layer
�s(i, j ) + 1 of Ts(i), are present in the first layer of the subtree Ts(j ; i). With a slight abuse
of notation, we will use Ts(j ; i) to refer to the set of agents in the subtree as well as the
subtree itself. Finally, let T̄s(j ; i) refer to the subtree (and its constituent agents) of Ts(i)

7Arguments using such trees are commonly used in the analysis of the PoA for network
formation games; see, for example, Albers et al. [1].
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Layer 0

Layer 1

Layer 2

Layer 3

Ts(χ : μ)T̄s(χ : μ)

Ts(μ)
μ

χ

Figure 1 An induced shortest-path tree, Ts (μ), of a graph Gs rooted at a min-cost agent μ. Solid edges represent
tree edges, and dotted edges represent nontree edges. Given a max-cost agent χ 
= μ in layer k = �s (μ, χ ), the
tree Ts (χ ; μ) is the subtree rooted at χ with the stipulation that every i in layer k + 1 that is adjacent to χ in Gs

is in Ts (χ ; μ). T̄s (χ ; μ) represents the part of Ts (μ) made up of agents/nodes that are not a part of Ts (χ ; μ).

that are not a part of Ti(j ; i). See Figure 1 for an illustration with i = μ and j = χ and
solid (dotted) lines representing tree (nontree) edges.

Lemma 3.3. Let μ and χ be min- and max-cost agents in a Nash equilibrium s. The
inequality ratio is at most

IR(s) = cχ (s)

cμ(s)
≤ α

(
1 + |sχ ∩ Ts(χ ; μ)|) + |T̄s(χ ; μ)| − �s(χ,μ) · |Ts(χ ; μ)| + dμ(s)

dμ(s)
,

(3.1)
where dμ(s) = ∑

i �s(μ, i) is the distance-cost for agent μ.

Intuitively, the bound in Equation 3.1 follows from deriving upper- and lower-bounds
on the costs of the max- and min-cost agents, respectively. The upper bound on the cost of
the max-cost agent, χ , follows from considering a strategic deviation whereby χ builds a
direct link to a min-cost agent μ and then drops all of its purchased links except those to
agents j ∈ sχ that are further from μ than χ . If the original strategy is a Nash equilibrium,
then we know that χ ’s cost must be no higher than its cost given this new strategy.8 The
cost lower bound for a min-cost agent, μ, follows from simply assuming that μ did not
purchase any edges (i.e., cμ(s) ≥ dμ(s)).

Proof. Let χ and μ be a max- and a min-cost agent, respectively, in a Nash equilibrium
strategy s, and let Ts(μ), Ts(χ ; μ), and T̄s(χ ; μ) be as defined above. Consider the strategy

8Our derivation of this upper bound on χ ’s cost extends a similar argument used by [1]. In
particular, compare our Equation (3.2) below with Equation (2) in [1].
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s ′
χ for agent χ that is obtained from sχ by dropping all of χ ’s edges to agents outside of

Ts(χ ; μ) and buying an edge to μ (see Figure 1). Agent χ ’s cost under this new strategy
s ′ = (s ′

χ , s−χ ) is

cχ (s ′) ≤ α
(
1 + |sχ ∩ Ts(χ ; μ)|)︸ ︷︷ ︸

bχ (s ′)

+ |T̄s(χ ; μ)| − �s(μ, χ ) · |Ts(χ ; μ)| + dμ(s)︸ ︷︷ ︸
upper-bound on dχ (s ′)

. (3.2)

Because s is a Nash equilibrium, we know that cχ (s) ≤ cχ (s ′), and the lemma follows from
(3.2) and the fact that cμ(s) ≥ dμ(s).

Agent χ ’s usage cost, bχ (s ′), simply reflects the construction of s ′
χ – building an

edge to μ and dropping all edges to nodes in sχ that are outside of Ts(χ ; μ). The remainder
of the proof is dedicated to establishing the upper bound on dχ (s ′). For a set X ⊂ N , let
dX

i (s) = ∑
j∈X �s(i, j ) denote agent i’s usage cost to agents in X given the joint strategy

s. We will bound dχ (s ′) in terms of dμ(s) = dTs (χ ;μ)
μ (s) + dT̄s (χ ;μ)

μ (s). Notice that

dTs (χ ;μ)
μ (s) =

∑
i∈Ts (χ ;μ)

(�s(μ, χ ) + �s(χ, i))

= �s(μ, χ ) · |Ts(χ ; μ)| +
∑

i∈Ts (χ ;μ)

�s(χ, i)

= �s(μ, χ ) · |Ts(χ ; μ)| + dTs (χ ;μ)
χ (s),

since χ is on a shortest-path between μ and every agent i ∈ Ts(χ ; μ). Rearranging, we get

dTs (χ ;μ)
χ (s) = dTs (χ ;μ)

μ (s) − �s(μ, χ ) · |Ts(χ ; μ)|.
In s ′, χ ’s distance to agents in Ts(χ ; μ) is unchanged from s, so we can express χ ’s usage
cost to agents in Ts(χ ; μ) under s ′ in relation to μ’s distance to agents in Ts(χ ; μ) under s

as

dTs (χ ;μ)
χ (s ′) = dTs (χ ;μ)

μ (s) − �s(μ, χ ) · |Ts(χ ; μ)|. (3.3)

Next, we can derive dT̄s (χ ;μ)
χ (s ′) in terms of dT̄s (χ ;μ)

μ (s) in a very straightforward way.
By including a link to μ in s ′

χ and dropping all links to agents outside of Ts(χ ; μ), χ ’s
usage cost to agents in T̄s(χ ; μ) is at most |T̄s(χ ; μ)| more than μ’s usage cost to agents in
T̄s(χ ; μ) under s; i.e.,

dT̄s (χ ;μ)
χ (s ′) ≤ |T̄s(χ ; μ)| + dT̄s (χ ;μ)

μ (s). (3.4)

Putting (3.3) and (3.4) together, we get

dχ (s ′) = dTs (χ ;μ)
χ (s ′) + dT̄s (χ ;μ)

χ (s ′)

≤ dTs (χ ;μ)
μ (s) − �s(μ, χ ) · |Ts(χ ; μ)| + |T̄s(χ ; μ)| + dT̄s (χ ;μ)

μ (s)

= dμ(s) − �s(μ, χ ) · |Ts(χ ; μ)| + |T̄s(χ ; μ)|,
where we substituted dμ(s) = dTs (χ ;μ)

μ (s) + dT̄s (χ ;μ)
μ (s) in the last line. This completes the

proof.
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Corollary 3.4. Among the Nash equilibrium strategies that arise when the edge construc-
tion cost is a constant 1 ≤ α < ∞, the star topology maximizes the inequality ratio.

Proof. We will show that the inequality ratio established in Lemma 3.3 is maximized in a
star network topology. Recall Equation (3.1), bounding the inequality ratio of an arbitrary
Nash equilibrium strategy s for the UC game, repeated here for convenience:

IR(s) ≤ α(1 + |sχ ∩ Ts(χ ; μ)|) + |T̄s(χ ; μ)| − �s(χ,μ) · |Ts(χ ; μ)| + dμ(s)

dμ(s)
. (3.1)

Let x = |Ts(χ ; μ)| (ergo, |T̄s(χ ; μ)| = n−x) and x0 = 1+|sχ ∩Ts(χ ; μ)| ≤ x. Substituting

dμ(s) = dTs (χ ;μ)
μ (s) + dT̄s (χ ;μ)

μ (s)

= �s(χ,μ)x + dTs (χ ;μ)
χ (s) + dT̄s (χ ;μ)

μ (s),

we can rewrite (3.1) as

IR(s) ≤ αx0 + (n − x) − �s(χ,μ)x + dμ(s)

dμ(s)

= αx0 + n − x − �s(χ,μ)x + dTs (χ ;μ)
μ (s) + dT̄s (χ ;μ)

μ (s)

d
Ts (χ ;μ)
μ (s) + d

T̄s (χ ;μ)
μ (s)

= αx0 + n − x − �s(χ,μ)x + �s(χ,μ)x + dTs (χ ;μ)
χ (s) + dT̄s (χ ;μ)

μ (s)

�s(χ,μ)x + d
Ts (χ ;μ)
χ (s) + d

T̄s (χ ;μ)
μ (s)

= αx0 − n − x + dTs (χ ;μ)
χ (s) + dT̄s (χ ;μ)

μ (s)

�s(χ,μ)x + d
Ts (χ ;μ)
χ (s) + d

T̄s (χ ;μ)
μ (s)

. (3.5)

Notice that in Equation (3.5), the distance between μ and χ in Gs appears only in the
denominator. Therefore, toward our aim of maximizing (3.5), we can infer that �s(χ,μ) = 1.
Hence, μ and χ are necessarily adjacent in a Nash equilibrium s that maximizes the
inequality ratio. With μ and χ adjacent, we can substitute

dT̄s (χ ;μ)
μ (s) = dT̄s (χ ;μ)

χ (s) − |T̄s(χ ; μ)| = dT̄s (χ ;μ)
χ (s) − n + x

and

dTs (χ ;μ)
χ (s) = dTs (χ ;μ)

μ (s) − |Ts(χ ; μ)| = dTs (χ ;μ)
μ (s) − x,

giving us

IR(s) ≤ αx0 + dχ (s) − 2x − n

dμ(s) + 2x − n
. (3.6)

This leaves us with two approaches to identify topologies that maximize the inequality
ratio: we can maximize x0 (i.e., by setting x0 = n−1), or we can minimize x (i.e., set x = 1).
Both approaches imply star network topologies (the center- and peripheral-sponsored stars,
respectively), completing the proof.
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The next lemma establishes asymptotically tight upper bound on the inequality ratio
for star network topologies when the edge cost 1 ≤ α < ∞.

Lemma 3.5. As the number of agents grows toward infinity, the maximal inequality in a
star topology for the UC network formation game with a constant edge cost 1 ≤ α < ∞ is
max{2, (1 + α)/2}.

The proof of Lemma 3.5 is straightforward, so we provide only a sketch here. The
full proof can be found in the Appendix.

Proof Sketch. We consider two star topologies: the center-sponsored star strategy and
the peripheral-sponsored star strategy. It is easy to see that the inequality in these two star
strategies dominate that of all other star strategies (see the full proof in the Appendix for
details).

In the center-sponsored star strategy, sc, the max-cost agent χ is in the center and the
min-cost agent μ is in the periphery. Therefore, the inequality ratio is

IR(sc) = cχ (sc)

cμ(sc)
= (α + 1)(n − 1)

2n − 3
.

In the peripheral-sponsored star strategy, sp, the min-cost agent μ is in the center and the
max-cost agent χ is in the periphery. Hence, the inequality ratio is

IR(sp) = cχ (sp)

cμ(sp)
= α + 2n − 3

n − 1
.

As n → ∞, IR(sc) approaches (1+α)/2 and IR(sp) approaches 2. Therefore, the inequality
ratio for a star network is max{2, (1 + α)/2} as n grows to infinity. �

Finally, we are ready to prove the second case of Theorem 3.1, which will follow
directly from Lemmas 3.3 and 3.5 and Corollary 3.4.

Lemma 3.6. When 1 ≤ α < ∞ is a constant (independent of n), the NIR for the UC
game is at most max{2, (1 + α)/2} in the limit as n → ∞.

Proof. From Corollary 3.4 we know that, among Nash equilibrium strategies, the star
maximizes the inequality ratios and Lemma 3.5 provides the desired IR upper bound for
stars.

3.2. The Undirected Bounded Budget Connections Game

For the UBBC game, the NIR is at most two (Theorem 3.7). This bound holds for
uniform instances of the game, in which every agent has the same edge budget, as well
as for general cases in which agents can have heterogenous budgets. This upper bound is
tight, demonstrating that inequality at equilibrium in the UBBC game is independent of ex
ante inequalities in edge endowments.

Theorem 3.7. The NIR for the UBBC game is at most 2.
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The proof of Theorem 3.7 (following) proceeds as follows: we argue that in any
strategy profile where the agents with the maximum and minimum costs are adjacent, the
inequality ratio must be strictly less than two. If, the min-cost and max-cost agents are not
adjacent in a Nash equilibrium, it must be the case that neither of them stand to reduce
their individual costs by switching to a strategy that includes a link with the other agent,
because doing so would mean that the strategy is not a Nash equilibrium in the first place.
This implies that either

1. The inequality ratio is already less than 2; or
2. A maximum cost agent switching to a strategy that includes a link to a minimum cost

agent would lead them to a higher cost (i.e., by disconnecting the network).

However, by Lemma 3.8, case 2 cannot be a Nash equilibrium, so the NIR can be at
most 2.

Lemma 3.8. Suppose s = (s1, . . . , sn) is a UBBC strategy in which there exist (distinct)
agents x, y, z ∈ N with x ∈ sz, y /∈ sz, and z /∈ sy such that

1. Every x → y path in Gs contains agent z as an intermediate node, and
2. If z were to swap out x for a connection with agent y, then the network will become

disconnected (i.e., the edge {z, x} is a bridge).

Then s cannot be a Nash equilibrium.

The proof of Lemma 3.8 employs the main result of [26] with regard to the structure
of networks in asymmetric swap-equilibrium. The asymmetric swap-equilibrium holds
for a strategy s when, for every agent i ∈ N and every deviation s ′

i that differs from si

with the addition, removal, or swap of a single edge, we have ci(si, s−i) ≤ ci(s ′
i , s−i). The

asymmetric swap-equilibrium is a weaker equilibrium concept than the Nash equilibrium for
the UBBC, so their result (restated in Theorem 3.9 below) carries over to Nash equilibrium
for the UBBC. Recall that a graph is k-edge-connected if the removal of any k − 1 edge
does not disconnect it. A k-edge-connected component of a graph G is a maximal subgraph
G′ ⊂ G that is k-edge-connected.

Theorem 3.9. [26] Every network in an asymmetric swap-equilibrium has at most one
2-edge-connected component.

Put another way, Theorem 3.9 states that a Nash equilibrium strategy s will not induce
a graph Gs in which the removal of a single edge will split the graph into two components
that are both 2-edge-connected; i.e., the two components cannot both contain cycles.

Proof of Lemma 3.8. Let s be a strategy with agents x, y, z ∈ N that satisfy the given
conditions and assume (toward a contradiction) that s is a Nash equilibrium. Denote by X

the component of the network containing x that would result from the removal of x from
agent z’s strategy, and let Y = N \ X ∪ {z} be the set of the remaining agents (not in X)
also excluding agent z (see Figure 2). Recall that every agent i contributes at least one edge
to Gs (since ki ≥ 1) so the component X must contain a cycle. Hence, by Theorem 3.9, we
know that the subgraph induced by agents in Y must not contain a cycle.
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Figure 2 A schematic of the conditions expressed in Lemma 3.8.

Let GY denote the subgraph induced by the agents in Y . If ∃j ∈ Y such that kj > 1
then either |sj | < kj and j is not playing a best response (because they could build an
edge to an nonneighboring agent and decrease their cost) or GY will contain a cycle; both
scenarios contradicting our assumption that s is a Nash equilibrium. Therefore, assume
that the subgraph GY is a tree, and that kj = 1 for all j ∈ Y . Clearly, for every path
p = (y1, y2, . . . , ym = z) that begins at an agent y1 ∈ Y and ends at z, we have yi+1 ∈ syi

(to be otherwise would imply that kj > 1 for some j ∈ Y ).
Let j ∈ Y be a leaf in GY that is furthest from z. Let w ∈ sj be j ’s parent, and

let v ∈ sw be j ’s grandparent. If w = z, then we are done because this contradicts our
assumption that y and z are not adjacent in Gs . So assume that w 
= z. Let Dw be w’s
descendants in GY (i.e., the set of agents for whom w lies on their unique path to z), and
let Cw ⊆ Dw be w’s children (i.e., the set of agents in Dw that are adjacent to w). Consider
a deviation by j to the strategy s ′

j = {v} that replaces j ’s link to their parent with a link to
their grandparent. This deviation will increase j ’s distance to w and all nodes in Cw \{j} by
one and decrease j ’s distance to every node in N \Cw \ {j} by one. If |Cw| < |N \Cw|− 1
then agent j will benefit from switching to strategy s ′

j , contradicting our assumption that s

is a Nash equilibrium.
Suppose that |Cw| ≥ |N \ Cw| − 1, which implies that |Cw| ≥ (n − 1)/2. Let u ∈ sv

be w’s grandparent in GY . If there is another agent w′ with v ∈ sw′ , then this agent can
swap their link to v with a link to w and receive a strictly lower cost, which implies that
s was not a Nash equilibrium. If there is no such w′, then w can swap its link to v with a
link to its grandparent u and receive a strictly lower cost. This again implies that s was not
a Nash equilibrium. This completes the proof.

We are now ready to attend to the proof of Theorem 3.7. We will use the shorthand
G − {i, j} to denote the graph G with the edge {i, j} removed. �

Proof of Theorem 3.7. Consider (toward a contradiction) a strategy profile s that is a
Nash equilibrium in which cmax(s) ≥ 2 · cmin(s); i.e., a strategy s such that the inequality
ratio is at least 2. Notice that in this strategy an agent χ with cχ (s) = cmax(s) cannot be
directly connected to an agent μ with cμ(s) = cmin(s), because if it were, then χ would be
connected to the n − 2 other agents via μ’s shortest paths for a cost that is at most n − 2
more than the cost μ is subjected to. That is, if χ ∈ sμ or μ ∈ sχ then

cχ (s) ≤ (n − 2) + cμ(s) < 2 · cμ(s). (3.7)
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The strict inequality in (3.7) comes from the fact that cμ(s) > n − 2 since it is impossible
for μ to connect to n − 1 other agents for a cost any less than n − 1. Therefore, in order
for cχ (s) ≥ 2 · cμ(s), it must be the case that μ /∈ sχ and χ /∈ sμ. This implies that cχ (s)
must be no greater than (n − 2) + cμ(s), because switching to a strategy s ′

χ that includes a
link to agent μ would ensure as much, provided that switching to s ′

χ does not disconnect
the network.

Suppose that cχ (s) > (n − 2) + cμ(s) and if χ were to switch to a strategy s ′
χ that

is obtained by swapping out some x ∈ sχ for a link to μ results in the network G(s ′
χ ,s−χ )

becoming disconnected. Then it must be that every x → μ path in Gs includes agent χ ,
in which case it follows that the component of Gs − {χ, x} including x contains a cycle
because every agent’s budget affords them at least one edge. However, by Lemma 3.8, such
a strategy s cannot be a Nash equilibrium, contradicting our assumption that s is a Nash
equilibrium. This completes the proof. �

The upper bound established by Theorem 3.7 is asymptotically tight. This can be
observed in a “star-like” network in which every agent has a link to the min-cost agent μ,
and the degree of the max-cost agent χ is bounded by a constant independent of the number
of agents, n.9 In the asymptotic limit, as the number of agents tends toward infinity, the
inequality ratio between χ and μ equals 2.

4. EQUALITY, EQUILIBRIUM, AND EFFICIENCY

With the upper bounds on inequality in Nash equilibrium strategies established, we
are now in a position to address the relationship between (in)equality, equilibrium, and
efficiency. Although our focus here is on a specific metric of inequality (the inequality
ratio) and how it relates to efficiency in a particular setting (the network formation games),
the connection between inequality and efficiency more generally is a matter of considerable
interest among economic analysts, researchers, and policy makers (cf. [6, 7, 12, 8, 9]), as
well as the general public [31, 29]. As in Section 3, the presentation of this section is
divided into two parts, with the UC game analyzed in 4.1 (see Theorem 4.1) followed by
the UBBC in Section 4.2 (see Theorem 4.5).

4.1. The Undirected Connections Game

Theorem 4.1 summarizes our results on the relationship between equality, efficiency,
and Nash equilibrium for the UC game for the three regimes of α identified in Proposi-
tion 2.1.

Theorem 4.1. The relationship between inequality, Nash equilibrium, and efficiency in
the UC game:

1. When α < 1, there exist efficient Nash equilibrium strategies that maximize the inequality
ratio and other efficient Nash equilibrium strategies that achieve cost equality in the
limit as n → ∞.

9For a concrete example, consider a uniform instance of the UBBC game in which ki = 1 for
all i ∈ N , and the Nash equilibrium strategy that forms a star network with one “extra” edge linking
a pair of peripheral agents.
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2. When 1 ≤ α < 2, no Nash equilibrium strategy is also efficient. However, among Nash
equilibrium strategies, there exist some that maximize the inequality ratio, whereas
others are egalitarian in the limit as n → ∞.

3. When 2 ≤ α < ∞, there exist Nash equilibrium strategies that are
� both efficient and egalitarian in the limit as n → ∞; and
� efficient with maximal inequality in the limit as n → ∞.

We will prove the three parts of Theorem 4.1 individually in the next three lemmas.

Lemma 4.2. When α < 1, there exist efficient Nash equilibrium strategies for the UC
game that maximize the inequality ratio, and other efficient Nash equilibrium strategies
that achieve cost equality in the limit as n → ∞.

Proof. By Proposition 2.1, when α < 1, both Nash equilibrium strategies and socially
efficient strategies result in the formation of the complete network. From this fact and
Theorem 3.1, it follows that there exist socially efficient strategies that maximize the
inequality ratio. Therefore, we only need to show that there exist equilibrium strategies that
achieve cost equality.

Equality among all agents would follow if every agent builds exactly (n−1)/2 edges,
which can only occur when n is odd. When, n is even, then (n − 1)/2 is nonintegral; so the
closest we can get to equality calls for a strategy s in which the max-cost agents each build
�(n − 1)/2� edges while the min-cost agents get away with building one fewer edge each.
In this case, a min-cost agent’s cost is cmin(s) = cmax(s) − α, and the inequality ratio is

IR(s) = cmax(s)

cmax(s) − α

= (n − 1) − �(n − 1)/2�α
(n − 1) − (�(n − 1)/2� − 1)α

= 1 − α

α + α�(1 − n)/2� + n − 1
. (4.1)

As n → ∞, Equation (4.1) approaches 1. Hence, inequality vanishes as n increases,
concluding the proof.

Turning to the second item of Theorem 4.1, which addresses the case that α ∈ [1, 2),
we first note that Proposition 2.1 already implies that no Nash equilibrium strategy is
also an efficient strategy. This is because the Nash equilibrium strategies for this regime
of α correspond to networks with star topologies while efficient strategies correspond to
complete networks in which every possible edge is present. Furthermore, by Corollary 3.4
we know that the upper bound on the inequality ratio for this regime of α is achieved in a
star topology. Hence, to prove the second item of Theorem 4.1 we need only address the
existence of equilibrium strategies for which there is cost equality among the agents.

Lemma 4.3. When 1 ≤ α < 2, the UC game admits a Nash equilibrium strategy that is
egalitarian in the limit as n → ∞.
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Proof. Consider a joint strategy s inducing a star network topology among the |N | = n

agents in which the central agent c ∈ N buys k = 1 + � n−2
α

� edges {c, i} to agents
N¬b ⊂ N ; all the remaining edges {j, c} are paid for by their respective peripheral agent
j ∈ Nb = N \ N¬b ∪ {c}. (The sets Nb and N¬b partition N so that all agents that buy
edges appear in Nb and all those who do not buy any edges appear in N¬b.) In this strategy,
the agents i ∈ N¬b all incur a cost ci(s) = 2n − 3, all agents j ∈ Nb incur a cost of
cj (s) = 2n − 3 + α, and c incurs a cost cc(s) = n − 1 + αk ≤ 2n − 3 + α. Since
ci(s) < cc(s) ≤ cj (s), the inequality ratio is:

IR(s) = cj (s)

ci(s)
= 2n − 3 + α

2n − 3
= 1 + α

2n − 3
, (4.2)

which approaches 1 in the limit as n → ∞. It is easy to see that s is in fact a Nash
equilibrium because no agent stands to reduce its cost by deleting an edge (because doing
so would disconnect the network, prompting an infinite cost) and, at the cost of α ≥ 1 per
edge, the addition of any edges will decrease the agent’s usage cost by only 1 (per edge),
yielding no net decrease in the agent’s total cost.

Finally, the third item of Theorem 4.1 addresses the regime when α is a constant
greater than or equal to 2. In this regime, we show that there exist some efficient Nash
equilibrium strategies that are egalitarian and other efficient Nash equilibrium strategies
that achieve maximal inequality.

Lemma 4.4. When 2 ≤ α < ∞, there exist Nash equilibrium strategies in the UC game
that are both efficient and egalitarian in the limit as n → ∞; and there are Nash equilibrium
strategies that are both efficient and achieve maximal inequality.

Proof. Recall from Proposition 2.1 that, when α ≥ 2, the star is an efficient Nash equi-
librium strategy. Thus, the lemma will follow if we can show that some star strategies can
support maximal inequality while others can support equality.

To show the first part of the lemma (the existence of an egalitarian strategy that
yields to a star network topology), we can invoke the strategy constructed in the proof of
Lemma 4.3. Recall that this strategy calls for the central agent c ∈ N to buy 1 + � n−2

α
�

edges to peripheral agents N¬b ⊂ N , and all remaining agents j ∈ N \ N¬b ∪ {c} buy a
single edge to c. The inequality ratio for this strategy is expressed by Equation 4.2, which
approaches 1 in the limit as n → ∞, and is, hence, egalitarian.

The second part of the lemma (the existence of a star-topology-yielding strategy that
achieves the inequality upper bound established in Theorem 3.1) follows immediately from
Corollary 3.4, which states that inequality in the UC game is maximized in networks with
a star topology.

4.2. The Undirected Bounded Budget Connections Game

This section establishes the relationship between efficient Nash equilibrium strategies
and (in)equality in the UBBC game with uniform budgets. We find that when the budget
k is sufficiently small (k = O(1)), we can construct an efficient Nash equilibrium strategy
in which inequality is maximized; and when the edge budget is sufficiently large (k ≥
2
√

n − 1), then we show the existence of efficient Nash equilibrium strategies in which
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k = 1 O(1) 2
√

n − 1 n − 1

eff. w/ max IR

no eff. w/ minimal IR eff. w/ minimal IR

Figure 3 A summary of Theorem 4.5, characterizing the existence of Nash equilibrium strategies in the UBBC
game with respect to efficiency and the inequality ratio for different uniform budgets, k.

there is cost equality among all of the agents. Finally, we prove the nonexistence of efficient
Nash equilibrium strategies with egalitarian costs when k < 2

√
n − 1. These findings are

formally presented in Theorem 4.5 and summarized in Figure 3.

Theorem 4.5. The relationship between inequality, Nash equilibrium, and efficiency in
the UBBC game with uniform budgets k:

1. When k ≥ 1 is a constant (independent of n), there exists an efficient Nash equilibrium
strategy that achieves the NIR upper bound of 2 established in Theorem 3.7.

2. When k ≥ 2
√

n − 1, there exist efficient Nash equilibrium strategies that are egalitarian.
3. When 1 ≤ k < 2

√
n − 1, there does not exist an efficient Nash equilibrium strategy that

is egalitarian.

Lemma 4.6. In the UBBC game with constant (independent from n) uniform edge budgets
k ≥ 1, there exists an efficient Nash equilibrium strategy that achieves the NIR upper bound
of 2.

Proof. Fix k and let N = {0, 1, . . . , n − 1} denote the set of strategic agents. We will
construct an efficient Nash equilibrium strategy s as follows (see Figure 4):

1. ∀i ∈ {0, 1, . . . , k}, set si = {i + 1, i + 2, . . . , i + k}.

Step 1 Step 2 Step 3
Figure 4 Example of the three parts to the strategy constructed in the proof of Lemma 4.6. Dark nodes and edges
are those assigned in the specified step and arrows are meant to convey link “ownership.”
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2. ∀i ∈ {k + 1, k + 2, . . . , 2k − 1}, set si = {0, 1, . . . , i − k − 1, i + 1, i + 2, . . . , 2k}.
3. ∀i ∈ {2k, 2k + 1, . . . , n − 1}, set si = {0, 1, . . . , k − 1}.

The strategy s produces a network that has a diameter of 2. Thus, per Lemma 2.2, it is a
Nash equilibrium.

To show that s is socially efficient, we must determine its social cost. We can partition
the agents N into three sets that correspond to three “tiers” of costs:
� Agents in Na = {0, 1, . . . , k − 1} are each directly connected to every other agent, so

ci(s) = n − 1 for all i ∈ Na . Agents in Na incur the minimal cost among N .
� Agents in Nb = {2k + 1, 2k + 2, . . . , n − 1} are each directly linked to every agent in

Na and two hops away from every other agent, so ci(s) = 2(n − 1) − k for all i ∈ Nb.
Agents in Nb incur the maximal cost among N .

� Agents Nc = {k, k + 1, . . . , 2k} each have a direct link to every agent in Na and Nc and
a two-hop distance to agents in Nb, so ci(s) = 2(n − k − 1) for all i ∈ Nc.

The cardinality of these partitions are |Na| = k, |Nb| = n − 2k − 1, and |Nc| = k + 1, and
the social cost is

C(s) = [k(n − 1)] + [(n − 2k − 1)(2(n − 1) − k)] + [(k + 1)(2(n − k − 1))]

= 2(n2 − n − kn).

By Lemma 2.3, this is the minimal social cost in a uniform game with size-k budgets.
Therefore, s is socially efficient.

The inequality ratio is between a min-cost agent i ∈ Na and a max-cost agent j ∈ Nb;

IR(s) = cj (s)

ci(s)
= 2(n − 1) − k

n − 1
= 2 − k

n − 1
. (4.3)

Because (4.3) approaches 2 as n → ∞, this strategy maximizes the inequality ratio
established for the UBBC in Theorem 3.7. Hence, s is an efficient Nash equilibrium
strategy that achieves maximal inequality.

The next lemma establishes the second part of Theorem 4.5, showing that when
edge budgets are sufficiently large, we can find an efficient Nash equilibrium strategy that
achieves perfect equality among the agents. But first we need the following fact (see the
Appendix for a proof):

Fact 4.7. A δ-regular graph of diameter two can have at most n = δ2 + 1 nodes.

Lemma 4.8. In the UBBC game with uniform edge budgets k ≥ 2
√

n − 1, there exist
efficient Nash equilibrium strategies that are egalitarian.

Proof. For a strategy s to be efficient and egalitarian, it must be the case that Gs has a
diameter of at most 2, and all agents have common one- and two-hop neighborhood sizes.
When k ≥ (n − 1)/2, then this is trivially satisfied by the complete graph. Satisfying both
of these properties for k < (n − 1)/2 requires that Gs be 2k-regular with a diameter of 2.
From Fact 4.7, we know that such graphs are possible only if k ≥ 2

√
n − 1.
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Finally, we turn to the third part of Theorem 4.5, which establishes the nonexistence
of efficient Nash equilibrium strategies that are egalitarian when edge budgets are below
2
√

n − 1. The nonexistence follows as a corollary of Fact 4.7 and Proposition 2.4 by
observing that when k < 2

√
n − 1, there are not enough edges to create a regular, diameter-

2 network.

Corollary 4.9. When 1 ≤ k < 2
√

n − 1, there does not exist an efficient Nash equilibrium
strategy that is egalitarian.

5. DISCUSSION AND CONCLUSIONS

This paper examines inequality in two simple models of strategic network formation:
the Undirected Connections (UC) game [14] and the Undirected Bounded Budget Con-
nections (UBBC) game introduced by [13]. To this end, we introduce the Nash Inequality
Ratio (NIR) as an instrument to quantify the level of inequality that can exist between a
pair of agents in a Nash equilibrium. Upper bounds on the NIR are established for both
games, and we show that these bounds are tight.

Our analyses of these games reveal an interesting relationship between scarcity
(expressed by lower budgets in the UBBC model and high edge costs in the UC model) and
inequality. In the UBBC game, we found that when edges are scarce, the inequality upper
bound is attainable in Nash equilibrium; but when edges are more plentiful, the highest level
of inequality is not sustainable in equilibrium. A similar correspondence is observed in the
UC model, in which higher edge costs can support maximal inequality in equilibrium. With
respect to efficiency, we find that the two games behave differently from one another: in the
UC game, scarcity can support efficient Nash equilibrium strategies with either egalitarian
costs or maximal inequality; but the UBBC game supports only efficient Nash equilibrium
strategies that are not egalitarian when edges are scarce.

The NIR affords a wide-angle lens through which inequality can be analyzed, charac-
terizing the extent to which the costs incurred by a pair of agents can differ in equilibrium. It
does not, however, provide a clear view on the distribution of inequality among populations
of agents, nor does it identify the inequality ratio of a “typical” Nash equilibrium strategy.
Indeed, in our analysis of both network formation games we often relied on the inequality
furnished by networks with a star topology in which there is a single, central agent that in-
curred the lowest (or sometimes highest) cost while the remaining n− 1 agents all incurred
the highest (or lowest) cost. In star networks, the inequality between a pair of agents selected
uniformly at random is, with a high probability, nonexistent since neither agent will likely
be the central agent. One interesting direction for future research that extends the analysis
presented here would be to derive upper bounds on the expected inequality ratio between
randomly selected pairs of agents. A related problem is to bound the inequality ratio of a
randomly chosen Nash equilibrium strategy, or from the set of equilibrium strategies that
result from a particular game dynamic such as best or approximate-best response.

We believe that an analysis of the NIR will provide interesting insight into many
other games beyond the two network formation games analyzed here. As with the PoA, the
NIR can be used to establish a bound on the “price” of strategic behavior by answering the
questions: To what extent can the speed of costs/benefits be found in equilibrium outcomes
of distributed decision making by self-interested agents? It may be anarchy, but is it fair?
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APPENDIX: OMITTED PROOFS

Lemma 2.3. The social cost of any efficient strategy profile for a uniform UBBC
instance with edge budgets k ≥ 1 is

2n(n − 1) − 2nk. (A.1)

Proof. Let Cmin(n, k) be the social cost of an efficient outcome for a uniform UBBC
instance with n agents, each with a budget of k edges. When k = kmax = (n − 1)/2, the
complete graph is the efficient outcome with a social cost of Cmin(n, kmax) = n(n − 1).
Because an individual edge must lie on at least two shortest paths (e.g., the edge {i, j} is on
both the i → j and j → i paths), starting from the complete network, every edge removal
increases the social cost by at least 2. Therefore, decreasing the edge budget by one reduces
the social cost by at least 2n. Hence, we can express Cmin(n, k) by

Cmin(n, k) = n(n − 1) + 2n(kmax − k).

Substituting kmax = (n − 1)/2 gives

Cmin(n, k) = n(n − 1) + 2n

(
n − 1

2
− k

)
,

which can be rearranged into Equation (A.1), completing the proof.

Proposition 2.4. Every uniform UBBC instance with k < (n − 1)/2 has an efficient
outcome with a diameter of 2.

Proving Propositon 2.4 relies on the following lemma:

Lemma A.1. The social costs of all diameter-2 topologies with a fixed number of m ≤
n(n−1)

2 non-overlapping edges are equivalent.

Proof. Suppose that s is a joint strategy profile that induces a diameter-2 network Gs with
m distinct (i.e., nonparallel) edges. Because Gs has a diameter of 2, we can express the cost
incurred by each agent i ∈ N in terms of their degree and the cardinality of their one- and
two-hop neighborhoods. Let Nx(Gs, i) and d(Gs, i) denote i’s x-hop neighborhood and
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degree, respectively, in Gs . The cost to i can be expressed as

ci(s) = d(Gs, i) + 2|N2(Gs, i) \ N1(Gs, i)| = d(Gsi) + 2 (|N2(Gs, i)| − |N1(Gs, i)|)
= d(Gs, i) + 2 (|N2(Gs, i)| − d(Gs, i) − 1) = 2|N2(Gs, i)| − d(Gsi) − 2

= 2n − d(Gs, i) − 2 (A.2)

The substitution of |N2(i)| for n in the last line is a requirement of our assumption that the
network Gs has a diameter of 2.

With the cost to an individual agent in a diameter-2 network established in Equa-
tion (A.2), we can turn our attention to the social cost. Let C(n,m) denote the social cost
of a diameter-2 network G with n nodes and m edges.

C(n,m) =
∑
i∈N

(2n − d(G, i) − 2) = 2n2 − 2n − 2m. (A.3)

The lemma follows from the fact that Equation (A.3) depends only on the diameter-2
assumption, the number of nodes, and the number of edges.

Proof of Proposition 2.4. From Lemma 2.3 we know that the social cost of an efficient
outcome for a uniform UBBC instance is given by Equation (A.1), and from Lemma A.1 we
know that the social cost of any diameter-2 network with m edges is given by Equation (A.3).
A uniform UBBC instance with k edges per agent induces a network with m = nk edges.
Substituting for m and rearranging shows that both Equations (A.1) and (A.3) are equivalent.
The requirement that k < (n − 1)/2 is a consequence of the fact that when k ≥ (n − 1)/2,
the efficient outcome is the complete graph, which has a diameter of 1. �

Lemma 3.5. As the number of agents grows toward infinity, the maximal inequality in a
star topology for the UC network formation game with a constant edge cost 1 ≤ α < ∞ is
max{2, (1 + α)/2}.

Note that the notation for the following proof of Lemma 3.5 differs from that
used in the proof sketch given in Section 3.1. This is because the following proof must
address more than just the center- and peripheral-sponsored stars as was done in the
sketch.

Proof. Let s be a strategy profile that produces a star topology rooted at agent c. Suppose
that k ∈ {0, 1, . . . , n − 1} is the number of edges that c purchases; i.e., |sc| = k. When
k = 0, we get the peripheral-sponsored star, and when k = n − 1, we get the center-
sponsored star. If k < n−1, then ∃j ∈ N such that cj (s) = 2n−3+α, meaning that j had
to purchase the edge {j, c}. Similarly, when k > 0, then ∃i ∈ N such that ci(s) = 2n − 3,
meaning that c covered the cost of the edge {c, i}.

Partition the set of agents N into three sets:
� Nc = {c} is the singleton consisting of the central agent,
� Nb = {i : c ∈ si} ⊆ N \ {c} is the set of agents who built an edge to c, and
� N¬b = {j : j ∈ sc} ⊆ N \ {c} is the set of “free-loading” agents who do not buy an edge

to c.
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Note that we have |N¬b| = k and |Nb| = n − k − 1. All agents within a particular part are
cost equivalent, so the cost to an agent i given the joint strategy profile s is

ci(s) =
⎧⎨
⎩

n − 1 + αk if i ∈ Nc

2n − 3 + α if i ∈ Nb

2n − 3 if i ∈ N¬b

.

When k > (n − 2)/α + 1, agents in Nc incur the highest cost and agents in N¬b

incur the lowest cost. Therefore, the inequality ratio is (n − 1 + αk)/(2n − 3). This ratio is
maximized when k = n − 1 (i.e., in the center-sponsored star), so the maximal inequality
ratio between agents in Nc and N¬b is (α + 1)(n − 1)/(2n − 3), giving us

lim
n→∞ IR = 1 + α

2
. (3.5)

When k < (n − 2)/α, the central agent in Nc incurs the lowest cost while agents in
Nb incur the highest cost. In this case, the inequality ratio is (2n−3+α)/(n−1+αk). This
quantity is maximized when k = 0 (i.e., in the peripheral-sponsored star), so the maximal
inequality ratio between agents in Nc and Nb is simply (2n − 3 + α)/(n − 1), giving us

lim
n→∞ IR = 2. (3.6)

Hence, the largest inequality ratio for a star topology is the maximum between
Equations (3.5) and (3.6) as n → ∞.

Fact 4.7. A δ-regular graph of diameter two can have at most n = δ2 + 1 nodes.

Proof. This fact follows from the Moore bound (cf. the survey [28]). For completeness,
we summarize the relevant part of the presentation in [28, Section 3.1] regarding the Moore
bound.

Consider a node v in a δ-regular graph G. Let ni denote the number of nodes at
distance i from v in G. We can bound ni ≤ (δ − 1)ni−1. If G has a diameter D then

nD =
D∑

i=0

ni ≤ 1 + δ + δ(δ − 1) + · · · + δ(δ − 1)D

= 1 + δ(1 + (δ − 1) + · · · + (δ − 1)D−1)

=
{

1 + δ (δ−1)D−1
δ−2 if δ > 2

2D + 1 if δ = 2
.

Hence, when the diameter is D = 2, there can be at most δ2 + 1 nodes.
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