
Internet Mathematics Vol. 9, No. 4: 434–491

On the Hyperbolicity
of Small-World and Treelike
Random Graphs
Wei Chen, Wenjie Fang, Guangda Hu, and Michael W. Mahoney

Abstract. Hyperbolicity is a property of a graph that may be viewed as a “soft” version
of a tree, and recent empirical and theoretical work has suggested that many graphs
arising in Internet and related data applications have hyperbolic properties. Here we
consider Gromov’s notion of δ-hyperbolicity and establish several positive and negative
results for small-world and treelike random graph models. First, we study the hyperbol-
icity of the class of Kleinberg small-world random graphs KSW(n, d, γ), where n is the
number of vertices in the graph, d is the dimension of the underlying base grid B, and
γ is the small-world parameter such that each node u in the graph connects to another
node v in the graph with probability proportional to 1/dB (u, v)γ , with dB (u, v) the grid
distance from u to v in the base grid B. We show that when γ = d, the parameter value
allowing efficient decentralized routing in Kleinberg’s small-world network,the hyper-
bolic δ is Ω

(
(log n)1/ (1 .5(d+1)+ ε )

)
with probability 1 − o(1) for every ε > 0 independent

of n. We see that hyperbolicity is not significantly improved in relation to graph diam-
eter even when the long-range connections greatly improve decentralized navigation.
We also show that for other values of γ, the hyperbolic δ is very close to the graph
diameter, indicating poor hyperbolicity in these graphs as well. Next we study a class
of treelike graphs called ringed trees that have constant hyperbolicity. We show that
adding random links among the leaves in a manner similar to the small-world graph
constructions may easily destroy the hyperbolicity of the graphs, except for a class of
random edges added using an exponentially decaying probability function based on the
ring distance among the leaves. Our study provides one of the first significant analytic
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results on the hyperbolicity of a rich class of random graphs, which sheds light on the
relationship between hyperbolicity and navigability of random graphs, as well as on the
sensitivity of hyperbolic δ to noises in random graphs.

1. Introduction

Hyperbolicity, a property of metric spaces that generalizes the idea of Rieman-
nian manifolds with negative curvature, has received considerable attention in
both mathematics and computer science. When applied to graphs, one may
think of hyperbolicity as characterizing a “soft” version of a tree: trees have
hyperbolicity zero, and graphs that “look like” trees in terms of their metric
structure have “small” hyperbolicity. Since trees are an important class of graphs
and since treelike graphs arise in numerous applications, the idea of hyperbolic-
ity has received attention in a range of applications. For example, it has found
usefulness in the visualization of the Internet, the Web, and other large graphs
[Lamping and Rao 94, Lamping et al. 95, Munzner and Burchard 95, Mun-
zner 98, Walter and Ritter 02]; it has been applied to questions of compact
routing, navigation, and decentralized search in Internet graphs and small-world
social networks [Gavoille and Ly 05, Chepoi et al. 12, Kleinberg 07, Abra-
ham et al. 07, Krioukov et al. 07, Boguñá et al. 09, Papadopoulos et al. 10]; and
it has been applied to a range of other problems such as distance estimation,
network security, sensor networks, and traffic flow and congestion minimization
[Baryshnikov 02, Jonckheere and Lohsoonthorn 02, Jonckheere and Lohsoon-
thorn 04, Jonckheere et al. 08, Narayan and Saniee 11, de Montgolfier et al. 11].

The hyperbolicity of graphs is typically measured by Gromov’s hyperbolic δ

[Gromov 87, Bridson and Haefliger 99] (see Section 2). The hyperbolic δ of a
graph measures the “treelikeness” of the graph in terms of the graph distance
metric. It can range from 0 to half the graph diameter, with trees having δ = 0,
in contrast to “circle graphs” and “grid graphs” having large δ equal to roughly
half their diameters.

In this paper, we study the δ-hyperbolicity of families of random graphs that
intuitively have some sort of treelike or hierarchical structure. Our motivation
comes from two angles. First, although there are quite a few empirical studies
on the hyperbolicity of real-world and random graphs [Baryshnikov 02, Jon-
ckheere and Lohsoonthorn 02, Lou 08, Lohsoonthorn 03, Narayan and
Saniee 11, de Montgolfier et al. 11], there are essentially no systematic analytic
studies of the hyperbolicity of popular random graphs. Thus, our work is intended
to fill this gap. Second, a number of algorithmic studies show that good graph
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hyperbolicity leads to efficient distance labeling and routing schemes [Chepoi and
Dragan 00, Gavoille and Ly 05, Chepoi and Estellon 07, Chepoi et al. 08, Kri-
oukov et al. 10, Chepoi et al. 12], and the routing infrastructure of the Internet
has been empirically shown to be hyperbolic [Baryshnikov 02]. Thus, it is of
interest to investigate whether efficient routing capability implies good graph
hyperbolicity.

To achieve our goal, we first provide a fine-grained characterization of δ-
hyperbolicity of graph families relative to the graph diameter: a family of random
graphs is

(a) constantly hyperbolic if their hyperbolic δ’s are constant, regardless of the
size or diameter of the graphs;

(b) logarithmically (or polylogarithmically) hyperbolic if their hyperbolic δ’s are
of order the logarithm (or polylogarithm) of the graph diameters;

(c) weakly hyperbolic if their hyperbolic δ’s grow asymptotically slower than the
graph diameters; and

(d) not hyperbolic if their hyperbolic δ’s are of the same order as the graph
diameters.

We study two families of random graphs. The first family is Kleinberg’s grid-
based small-world random graphs [Kleinberg 00], which build random long-range
edges among pairs of nodes with probability inversely proportional to the γth
power of the grid distance of the pairs. Kleinberg shows that when γ equals the
grid dimension d, the number of hops for decentralized routing can be improved
from Θ(n) in the grid to O(polylog(n)), where n is the number of vertices in the
graph. Contrary to the improvement in decentralized routing, we show that when
γ = d, then with high probability, the small-world graph is not polylogarithmi-
cally hyperbolic. We further show that when 0 ≤ γ < d, the random small-world
graphs are not hyperbolic, and when γ > 3 and d = 1, the random graphs are
not polylogarithmically hyperbolic. Although there still exists a gap between
hyperbolic δ and graph diameter at the sweet spot of γ = d, our results already
indicate that long-range edges that enable efficient navigation do not significantly
improve the hyperbolicity of the graphs.

Our second family of graphs is random ringed trees. A ringed tree is a binary
tree with nodes in each level of the tree connected by a ring (Figure 1(d)). Ringed
trees can be viewed as an idealized version of hierarchical structure with local
peer connections, such as the Internet autonomous system (AS) topology. We
show that a ringed tree is quasi-isometric to the Poincaré disk, the well-known
hyperbolic space representation, and thus it is constantly hyperbolic. We then
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study how random additions of long-range links on the leaves of a ringed tree
affect the hyperbolicity of random ringed trees. Note that due to the tree base
structure, random ringed trees allow efficient routing within O(log n) steps us-
ing tree branches. Our results show that if the random long-range edges between
leaves are added according to a probability function that decreases exponentially
fast with the ring distance between leaves, then the resulting random graph is
logarithmically hyperbolic, but if the probability function decreases only as a
power law with ring distance, or based on another tree distance measure similar
to that in [Kleinberg 02], the resulting random graph is not hyperbolic. Fur-
thermore, if we use binary trees instead of ringed trees as base graphs, none of
the above augmentations is hyperbolic. Taken together, our results indicate that
δ-hyperbolicity of graphs is quite sensitive to both base graph structures and
probabilities of long-range connections.

To summarize, we provide one of the first significant analytic results on the
hyperbolicity properties of important families of random graphs. Our results
demonstrate that efficient routing performance does not necessarily mean good
graph hyperbolicity (such as logarithmic hyperbolicity).

1.1. Related Work

There has been a considerable amount of work on search and decentralized search
subsequent to Kleinberg’s original work [Kleinberg 00, Kleinberg 02], much of
which has been summarized in the review [Kleinberg 06].

In parallel with this, there has been empirical and theoretical work on hy-
perbolicity of real-world complex networks as well as simple random graph
models. On the empirical side, [Baryshnikov 02] showed that measurements of
the Internet are negatively curved; [Jonckheere and Lohsoonthorn 02, Jonck-
heere and Lohsoonthorn 04, Jonckheere et al. 08, Lou 08, Lohsoonthorn 03]
provided empirical evidence that randomized scale-free and Internet graphs
are more hyperbolic than other types of random graph models; [Narayan and
Saniee 11] measured the average δ and related curvature to congestion; and
[de Montgolfier et al. 11] measured tree-width and hyperbolicity properties of
the Internet. On the theoretical side, one has [Papazian and Rémila 00, Jonck-
heere et al. 08, Bermudo et al. 10, Narayan et al. 12, Tucci 12, Shang 12], among
which [Narayan et al. 12, Tucci 12, Shang 12] study Gromov hyperbolicity of
random graphs and are most relevant to our work. In [Narayan et al. 12], the au-
thors study δ-hyperbolicity of sparse Erdős–Rényi random graphs G(n, p), where
n is the number of vertices in the graph and each pair of nodes is connected by
an edge with probability p independent from every other edge, with p = c/n

for some constant c > 1. The authors prove that with positive probability, these
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graphs are not δ-hyperbolic for any positive constant δ (i.e., not constantly hy-
perbolic in our definition). In [Tucci 12], the author shows that random d-regular
graphs are almost surely not constantly hyperbolic. In [Shang 12], it is shown
that with nonzero probability, the Newman–Watts small-world model [Newman
and Watts 99] is not constantly hyperbolic. These studies investigate only con-
stant hyperbolicity on random graphs, while our study moves beyond constant
hyperbolicity and shows whether certain random graph classes are logarithmi-
cally hyperbolic, or not hyperbolic at all, compared with the graph diameters.
Moreover, the one-dimensional Newman–Watts small-world model studied in
[Shang 12] is a special case of the Kleinberg small-world model that we study in
this paper (with dimension d = 1 and small-world parameter γ = 0). As given by
Theorem 3.1(2), we show that with probability 1 − o(1), the hyperbolic δ of these
random graphs is Ω(log n), where n is the number of vertices in the graph. There-
fore, our result is stronger than the result in [Shang 12] for this particular case.

More generally, we see two approaches connecting hyperbolicity with efficient
routing in graphs. One approach studies efficient computation of graph proper-
ties, such as diameters, centers, approximating trees, and packings and cover-
ings for low-hyperbolic-δ graphs and metric spaces [Chepoi et al. 08, Chepoi
and Dragan 00, Gavoille and Ly 05, Chepoi et al. 12, Chepoi and Estel-
lon 07]. In large part, the reason for this interest is that there are often di-
rect consequences for navigation and routing in these graphs [Gavoille and
Ly 05, Chepoi et al. 12, Kleinberg 07, Abraham et al. 07]. While these results
are of interest for general low-hyperbolic-δ graphs, they can be less interesting
when applied to small-world and other low-diameter random models of complex
networks. To take one example, [Chepoi et al. 08] provides a simple construction
of a distance-approximating tree for δ-hyperbolic graphs on n vertices; but the
O(log n) additive-error guarantee is clearly less interesting for models in which
the diameter of the graph is O(log n). Unfortunately, this O(log n) arises for a
very natural reason in the analysis, and it is nontrivial to improve it for popular
treelike complex network models.

Another approach taken by several recent papers is to build random graphs
from hyperbolic metric spaces and then show that such random graphs lead
to several common properties of small-world complex networks, including
good navigability properties [Boguñá et al. 09, Papadopoulos et al. 10, Kri-
oukov et al. 10, Krioukov et al. 09]. While assuming a low-hyperbolicity metric
space to build random graphs in these studies makes intuitive sense, it is difficult
to prove nontrivial results on Gromov’s δ of these random graphs even for simple
random graph models that are intuitively treelike.

Understanding the relationship between these two approaches was one of the
original motivations of our research. In particular, the difficulties in the above
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two approaches led us to study hyperbolicity of small-world and treelike random
graphs.

Finally, ideas related to hyperbolicity have been applied in numerous other
network applications, such as distance estimation, network security, sensor net-
works, and traffic flow and congestion minimization [Shavitt and Tankel 08, Jon-
ckheere et al. 11, Jonckheere et al. 07, Jonckheere and Lohsoonthorn 04, Narayan
and Saniee 11, Baryshnikov and Tucci 10], as well as large-scale data visualization
[Munzner 98]. The latter applications typically take important advantage of the
idea that data are often hierarchical or treelike and that there is “more room” in
hyperbolic spaces of dimension 2 than in Euclidean spaces of any finite dimension.

1.2. Organization of This Paper

In Section 2, we provide basic concepts and terminologies on hyperbolic spaces
and graphs that are needed in this paper. In Sections 3 and 4, we study the hy-
perbolicity of small-world random graphs and ringed-tree-based random graphs.
For ease of reading, in each of Sections 3 and 4 we first summarize our technical
results together with their implications (Sections 3.1 and 4.1), then provide the
outline of the analyses (Sections 3.2 and 4.2), followed by the detailed techni-
cal proofs (Sections 3.3 and 4.3), and finally discuss extensions of our results
to other related models (Sections 3.4 and 4.4). We discuss open problems and
future directions related to our study in Section 5.

2. Preliminaries on Hyperbolic Spaces and Graphs

Here, we provide basic concepts concerning hyperbolic spaces and graphs used
in this paper; for more comprehensive coverage on hyperbolic spaces, see, e.g.,
[Bridson and Haefliger 99].

2.1. Gromov’s δ-Hyperbolicity

In [Gromov 87], there is defined a notion of hyperbolic metric space; and then
hyperbolic groups are defined to be finitely generated groups with a Cayley graph
that is hyperbolic. There are several equivalent definitions (up to a multiplicative
constant) of Gromov’s hyperbolic metric space [Bowditch 91]. In this paper, we
will mainly use the following.
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Definition 2.1. (Gromov’s four-point condition.) In a metric space (X, d), given u, v, w, x

with

d(u, v) + d(w, x) ≥ d(u, x) + d(w, v) ≥ d(u,w) + d(v, x)

in X, we note that

δ(u, v, w, x) =
1
2
(
d(u, v) + d(w, x) − d(u, x) − d(w, v)

)
.

The space (X, d) is called δ-hyperbolic for some nonnegative real number δ if for
every set of four points u, v, w, x ∈ X, we have δ(u, v, w, x) ≤ δ. Let δ(X, d) be
the smallest possible value of such a δ, which can also be defined as

δ(X, d) = sup
u,v ,w ,x∈X

δ(u, v, w, x).

Given an undirected, unweighted, and connected graph G = (V,E), one can
view it as a metric space (V, dG ), where dG (u, v) denotes the (geodesic) graph
distance between two vertices u and v. Then, one can apply the above four-
point condition to define its δ-hyperbolicity, which we denote by δ = δ(G) =
δ(V, dG ) (and which we sometimes refer to simply as the hyperbolicity or the δ

of the graph). Trees are 0-hyperbolic; and 0-hyperbolic graphs are exactly clique
trees (also called block graphs), which can be viewed as cliques connected in a
treelike fashion [Howorka 79]. Thus, it is often helpful to view graphs with a low
hyperbolic δ as “thickened” trees, or in other words, as treelike when viewed at
large size scales.

If we let D(G) denote the diameter of the graph G. Then by the triangle in-
equality, we have δ(G) ≤ D(G)/2. We will use the asymptotic difference between
the hyperbolicity δ(G) and the diameter D(G) to characterize the hyperbolicity
of the graph G.

Definition 2.2. (Hyperbolicity of a graph.) For a family of graphs G with diameter D(G),
with G ∈ G going to infinity as the size of G grows to infinity, we say that G is con-
stantly (respectively logarithmically, polylogarithmically, or weakly) hyperbolic if
δ(G) = O(1) (respectively O(log D(G)), O((log D(G))c) for some constant c > 0,
or o(D(G))) as D(G) goes to infinity; and G is not hyperbolic if δ(G) = Θ(D(G)),
where G ∈ G.

The above definition provides a more fine-grained characterization of hyper-
bolicity of graph families than one typically sees in the literature, which generally
discusses only whether a graph family is constantly hyperbolic. This definition
does not address the hyperbolicity of graph families in which the diameter
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remains bounded as the size of the graph becomes unbounded. For such graph
families, one may likely need tight analysis on the constant factor between the
hyperbolic δ and the graph diameter, and it is beyond the scope of this paper.

2.2. Rips Condition

The Rips condition [Gromov 87, Bridson and Haefliger 99] is a technically equiv-
alent condition to Gromov’s four-point condition up to a constant factor. We use
the Rips condition in analyzing the δ-hyperbolicity of ringed trees. In a metric
space (X, d), we define a geodesic segment [u, v] between two points u, v to be
the image of a function ρ : [0, d(u, v)] → [u, v] satisfying

ρ(0) = u, ρ(d(u, v)) = v, d(ρ(s), ρ(t)) = |s − t|,
for every s, t ∈ [0, d(u, v)]. We say that a metric space is geodesic if every pair of
its points has a geodesic segment, not necessarily unique. In a geodesic metric
space (X, d), given u, v, w in X, we denote by

Δ(u, v, w) = [u, v] ∪ [v, w] ∪ [w, u]

a geodesic triangle. We call [u, v], [v, w], [w, u] sides of Δ(u, v, w). We should
note that in general, geodesic segments and geodesic triangles are not unique up
to their endpoints.

In a metric space, it is sometimes convenient to consider distances between
point sets in the following way. We say that a set S is within distance d of
another set T if S is contained in the ball B(T, d) of all points within distance d

of some point in T . We say that S and T are within distance d of each other if
S is within distance d of T and conversely.

Definition 2.3. (Rips condition.) A geodesic triangle Δ(u, v, w) in a geodesic metric space
(X, d) is called δ-slim for some nonnegative real number δ if every point on a
side is within distance δ of the union of the other two sides. The space (X, d) is
called Rips δ-hyperbolic if every geodesic triangle in (X, d) is δ-slim. We denote
by δRips(X, d) the smallest possible value of such δ (it could be infinity).

It is known (see, e.g., [Ghys and de La Harpe 90, Bridson and Haefliger 99,
Chepoi et al. 08]) that δ(X, d) and δRips(X, d) differ only within a multiplicative
constant. In particular, δ(X, d) ≤ 8δRips(X, d) and δRips(X, d) ≤ 4δ(X, d). Since
we are concerned only with the asymptotic growth of δ(X, d), the Rips condition
can be used in place of Gromov’s four-point condition.

For an undirected unweighted graph G = (V,E), we can also treat it as a
geodesic metric space with every edge interpreted as a segment of length 1,
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Figure 1. Poincaré disk, its tessellation, a binary tree, and a ringed tree.

and thus use the Rips condition to define its hyperbolicity, which we denote
by δRips(G). Note that in the case of an unweighted graph, when considering
the distance between two geodesics on the graph, we consider only the distance
between vertices, since other points on the edges can add at most 2 to the distance
between vertices.

2.3. Poincaré Disk

The Poincaré disk (see Figure 1(a) for an illustration) is a well-studied hyperbolic
metric space. Although in this paper we touch upon it only briefly when we study
ringed-tree graphs, it is useful to convey some intuition about hyperbolicity and
treelike behavior.
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Definition 2.4. Let D = B(0, 1) be an open disk in the complex plane with origin 0
and radius 1, with the following distance function:

d(u, v) = arccosh
(

1 +
2‖u − v‖2

(1 − ‖u‖2)(1 − ‖v‖2)

)
.

Then (D, d) is a metric space, which we call the Poincaré disk.

Visually, a (hyperbolic) line in the Poincaré disk is the segment of a circle in
the disk that is perpendicular to the circular boundary of the disk, and thus all
lines bend inward toward the origin. The hyperbolic distance between two points
in the disk of fixed distance in the complex plane increases exponentially as the
points move toward the boundary of the disk, meaning that there is much more
“space” toward the boundary than around the origin. This can be seen from a
tessellation of the Poincaré disk, as shown in Figure 1(b).

2.4. Quasi-Isometry

Quasi-isometry, defined as follows, is a concept used to capture the large-scale
similarity between two metric spaces.

Definition 2.5. (Quasi-isometry.) For two metric spaces (X, dX ), (Y, dY ), we say that
f : X → Y is a (λ, ε)-quasi-isometric embedding from X to Y if for all u, v ∈ X,
we have

1
λ

dX (u, v) − ε ≤ dY (f(u), f(v)) ≤ λdX (u, v) + ε.

Furthermore, if the ε neighborhood of f(Y ) covers X, then we say that f is a
(λ, ε)-quasi-isometry. Moreover, we say that X,Y are quasi-isometric if such a
(λ, ε)-quasi-isometry exists for some constants λ and ε.

If two metric spaces are quasi-isometric with some constant, then they have the
same “large-scale” behavior. For example, the d-dimensional grid Zd and the d-
dimensional Euclidean space R d are quasi-isometric, realized by the (

√
d,
√

d/2)-
quasi-isometric embedding (x, y) 	→ (x, y).

As a second example, consider an infinite ringed tree: start with a binary tree
(illustrated in Figure 1(c)) and then connect all vertices at a given tree level into
a ring. This is defined more formally in Section 4, but an example is illustrated in
Figure 1(d). As we prove in Section 4, the infinite ringed tree is quasi-isometric
to the Poincaré disk; thus it may be equivalently viewed as a “softened” binary
tree or as a “coarsened” Poincaré disk.
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Quasi-isometric embeddings have the important property of preserving hyper-
bolicity, up to a constant factor, as given by the following proposition.

Proposition 2.6. [Bridson and Haefliger 99, Theorem 1.9, Chapter III.H] Let X and
X ′ be two metric spaces, and let f : X ′ → X be a (λ, ε)-quasi-isometric embed-
ding. If X is δ-hyperbolic, then X ′ is δ′-hyperbolic, where δ′ is a function of δ,
λ, and ε.

3. δ-Hyperbolicity of Grid-Based Small-World Graphs

In this section, we consider the δ-hyperbolicity of graphs constructed according
to the small-world graph model as formulated in [Kleinberg 00], in which long-
range edges are added on top of a base grid, which is a discretization of a low-
dimensional Euclidean space.

The model starts with n vertices forming a d-dimensional base grid (with
wraparound). More precisely, given positive integers n and d such that n1/d is
also an integer, let B = (V,E) be the base grid, with

V =
{
(x1 , x2 , . . . , xd) | xi ∈ {0, 1, . . . , n1/d − 1}, i ∈ [d]

}
,

and

E =
{
((x1 , x2 , . . . , xd), (y1 , y2 , . . . , yd)) | ∃j ∈ [d], yj = xj + 1 mod n1/d

or yj = xj − 1 mod n1/d , ∀i 
= j, yi = xi

}
.

Let dB denote the graph distance metric on the base grid B. We then build a
random graph G on top of B such that G contains all vertices and all edges
(referred to as grid edges) of B, and for each node u ∈ V , it has one long-range
edge (undirected) connected to some node v ∈ V , with probability proportional
to 1/dB (u, v)γ , where γ ≥ 0 is a parameter. We refer to the probability space of
these random graphs as KSW(n, d, γ), and we let δ(KSW(n, d, γ)) denote the ran-
dom variable of the hyperbolic δ of a randomly chosen graph G in KSW(n, d, γ).
Recall that Kleinberg showed that the small-world graphs with γ = d allow effi-
cient decentralized routing (with O(log2 n) routing hops in expectation), whereas
graphs with γ 
= d do not allow any efficient decentralized routing (with Ω(nc)
routing hops for some constant c) [Kleinberg 00], and note that the base grid B

has large hyperbolic δ, i.e., δ(B) = Θ(n1/d) = Θ(D(B)). Intuitively, the struc-
tural reason for the efficient routing performance at γ = d is that long-range edges
are added “hierarchically” such that each node’s long-range edges are nearly uni-
formly distributed over all “distance scales.”
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3.1. Results and Their Implications

The following theorem summarizes our main technical results on the hyperbol-
icity of small-world graphs for different combinations of d and γ.

Theorem 3.1. With probability 1 − o(1) (as n goes to infinity), we have

(1) δ(KSW(n, d, γ)) = Ω
(
(log n)1/(1.5(d+1)+ε)

)
when d ≥ 1 and γ = d, for every

ε > 0 independent of n;

(2) δ(KSW(n, d, γ)) = Ω(log n) when d ≥ 1 and 0 ≤ γ < d; and

(3) δ(KSW(n, d, γ)) = Ω(n
γ −2
γ −1 −ε) when d = 1 and γ > 3, for every ε > 0 inde-

pendent of n.

This theorem, together with the results of [Kleinberg 00] on the navigability
of small-world graphs, has several implications. The first result shows that when
γ = d, then with high probability, the hyperbolic δ of the small-world graphs
is at least c(log n)1/1.5(d+1) for some constant c. We know that the diameter is
Θ(log n) in expectation when γ = d [Martel and Nguyen 04]. Thus the small-
world graphs at the sweet spot for efficient routing are not polylogarithmically
hyperbolic, i.e., δ is not O(logc log n)-hyperbolic for any constant c > 0.

However, there is still a gap between our lower bound and the upper bound
provided by the diameter, and thus it is still open whether small-world graphs
are weakly hyperbolic or not hyperbolic. Overall, though, our result indicates no
drastic improvement on hyperbolicity (relative to the improvement of the diam-
eter) for small-world graphs at the sweet spot (where a dramatic improvement
was obtained for the efficiency of decentralized routing).

The second result shows that when γ < d, then δ = Ω(log n). The diameter
of the graph in this case is Θ(log n) [Martel and Nguyen 04]. Thus, we see that
when γ < d, the hyperbolic δ is asymptotically the same as the diameter, i.e.,
although δ decreases as edges are added, small-world graphs in this range are
not hyperbolic.

The third result concerns the case γ > d, whereby the random graph degen-
erates toward the base grid (in the sense that most of the long-range edges are
very local), which itself is not hyperbolic. For the general γ, we show that for the
case of d = 1, the hyperbolic δ is bounded below by a (low-degree) polynomial
of n; this also implies that the graphs in this range are not polylogarithmically
hyperbolic. Note that our polynomial exponent γ−2

γ−1 − ε matches the diameter
lower bound proven in [Nguyen and Martel 05].
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3.2. Outline of the Proof of Theorem 3.1

In this subsection, we provide a summary of the proof of Theorem 3.1. In our
analysis, we use two different techniques, one for the first two results in Theo-
rem 3.1, and the other for the last result; in addition, for the first two results,
we further divide the analysis into the two cases d ≥ 2 and d = 1.

When d ≥ 2 and 0 ≤ γ ≤ d, the main idea of the proof is to pick a square grid
of size �0 (it does not matter from which dimension the square is chosen). We
know that when only grid distance is considered, the four corners of the square
grid have Gromov δ value equal to �0 . We will show that as long as �0 is not
very large (to be exact, O

(
(log n)1/(1.5(d+1)+ε)

)
when γ = d and O(log n) when

0 ≤ γ < d), the probability that at least one pair of vertices on this square grid
have a shortest path shorter than their grid distance after adding long-range
edges is close to zero (as n tends to infinity). Therefore, with high probability,
the four corners selected have Gromov δ as desired in the lower-bound results.

To prove this result, we study the probability that a randomly chosen pair of
vertices u and v at grid distance � are connected with a path that contains at
least one long-range edge and has length at most �. We bound such �’s above so
that this probability is close to zero. To do so, we first classify such paths into
a number of categories, based on the pattern of paths connecting u and v: how
a path alternates between grid edges and long-range edges, and the direction on
each dimension of the grid edges and long-range edges (i.e., whether it is the
same direction as from u to v in this dimension, or the opposite direction, or
no move in this dimension). We then bound the probability of a path in each
category existing and finally bound all such paths in the aggregate. The most
difficult part of the analysis is the bounding of the probability of a path existing
in each category.

For the case d = 1 and 0 ≤ γ ≤ d, the general idea is similar to the above. The
difference is that we do not have a base square to start with. Instead, we find a
base ring of length Θ(�0) using one long-range edge e0 , where �0 is fixed to be
as in the case of d ≥ 2. We show that with high probability, (a) such an edge e0

exists, and (b) the distance between any two vertices on the ring is simply their
ring distance. This is enough to prove the lower bound on the hyperbolic δ.

For the case of γ > 3 and d = 1, a different technique is used to prove the lower
bound on hyperbolic δ. We first show that in this case, with high probability
all long-range edges connect only two vertices with ring distance at most some
�0 = o(

√
n). Next, on the one-dimensional ring, we first find two vertices A and

B at two opposite ends of the ring. Then we argue that there must be a path
P+

AB that goes only through the clockwise side of ring from A to B, while there
is another path P−

AB that goes through only the counterclockwise side of the ring
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from A to B, and importantly, the shorter length of these two paths is at most
O(�0) longer than the distance between A and B. We then choose the midpoints
C and D of P+

AB and P−
AB , respectively, and argue that the δ values of the four

points A, B, C, and D give the desired lower bound.

3.3. Detailed Proof of Theorem 3.1

3.3.1. The Case d ≥ 2 and 0 ≤ γ ≤ d . For this case, let n′ = n1/d be the number of
vertices on one side of the grid. For convenience, our main analysis for this case
uses n′ instead of n.

We first provide a couple of lemmas used in our probability calculation.

Lemma 3.2. There exists a constant c1 such that for all k,m ∈ Z+ , we have∑
y 1 + ···+ y k = m

y 1 , . . . , y k ∈Z+

1
y1y2 · · · yk

≤ (c1 ln m)k−1

m
,

where the left-hand side is considered to be 0 for k > m; and for k = m = 1, the
right-hand side 00 is considered to be equal to 1.

Proof. For k = 1, the result is trivial. For k = 2, we have∑
y 1 + y 2 = m

y 1 , y 2 ∈Z+

1
y1y2

≤ 2
(

1
�m/2� · �m/2� + · · · + 1

(m − 1) · 1
)

≤ 2
�m/2�

(
1

�m/2� + · · · + 1
1

)
< c1

ln m

m
,

where c1 is roughly 4.
Suppose the lemma holds for k − 1, with k ≥ 3. The induction hypothesis is∑

y 1 + ···+ y k −1 = m

y 1 , . . . , y k −1 ∈Z+

1
y1y2 · · · yk−1

≤ (c1 ln m)k−2

m
.

Since the logarithm function is increasing, we have∑
y 1 + ···+ y k = m

y 1 , . . . , y k ∈Z+

1
y1y2 · · · yk

≤ 1
1

(c1 ln(m − 1))k−2

m − 1
+ · · · + 1

m − 1
(c1 ln 1)k−2

1

≤ (c1 ln m)k−2 ·
∑

y 1 + y 2 = m

y 1 , y 2 ∈Z+

1
y1y2

≤ (c1 ln m)k−2 · c1 ln m

m
.

Therefore, the inequality holds for all k.
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Lemma 3.3. For any constant θ ∈ R with 0 ≤ θ < 1, there exists a constant c2

(which depends only on θ) such that for all constants k, n′ ∈ Z+ , m ∈ R , and
nonzero λ1 , λ2 , . . . , λk ∈ R , we have∑

λ 1 y 1 + ···+ λ k y k = m

y 1 , . . . , y k ∈{1 , 2 , . . . , n ′}

1
yθ

1yθ
2 · · · yθ

k

≤ (c2n
′)(k−1)(1−θ) ,

where the left-hand side is considered to be 0 if there is no y1 , y2 , . . . , yk ∈
{1, 2, . . . , n′} satisfying λ1y1 + λ2y2 + · · · + λkyk = m.

Proof. For each tuple (y1 , y2 , . . . , yk−1) ∈ {1, 2, . . . , n′}k−1 , there is at most one yk ∈
{1, 2, . . . , n′} satisfying λ1y1 + λ2y2 + · · · + λkyk = m. Since 1/yθ

k ≤ 1, because
0 ≤ θ < 1, we have∑

λ 1 y 1 + ···+ λ k y k = m

y 1 , . . . , y k ∈{1 , 2 , . . . , n ′}

1
yθ

1yθ
2 · · · yθ

k

≤
∑

y1 ,...,yk −1 ∈{1,2,...,n ′}

1
yθ

1yθ
2 · · · yθ

k−1

=

(
n ′∑

i=1

1
iθ

)k−1

≤ (c2n
′)(k−1)(1−θ) ,

where c2 is roughly ( 1
1−θ )

1
1−θ . The lemma is proved.

3.3.2. Classification of Paths. In a d-dimensional random graph KSW(n, d, γ), there
are two kinds of edges: grid edges, which are edges on the grid, and long-range
edges, which are randomly added.

Fix two vertices u and v. A path from u to v may contain some long-range
edges and some grid edges. We divide the path into several segments along the
way from u to v: (a) each segment is either one long-range edge (called a long-
range segment) or several consecutive grid edges (called a grid segment); and
(b) two consecutive segments cannot both be grid segments (otherwise, combine
them into one segment).

We use a d-dimensional vector to denote each edge, so that the source coor-
dinate plus this vector equals the destination coordinate modulo n′. For a grid
with wraparound, there may be multiple vectors corresponding to one edge. We
choose the vector in which every element is from {−�n ′

2 �,−�n ′
2 � + 1, . . . , �n ′−1

2 �}.
In this way, the vector representation of each edge is unique, and the absolute
value of every dimension is the smallest. We call this the edge vector of that
edge. For every segment in the path, we call the summation (not modulo n′) of
all edge vectors the segment vector. For a vector (x1 , x2 , . . . , xd), define its sign
pattern as (sgn(x1), sgn(x2), . . . , sgn(xd)).

We say that two paths from u to v belong to the same category if
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(a) they have the same number of segments;

(b) their corresponding segments are of the same type (long-range or grid seg-
ments);

(c) for every pair of corresponding long-range segments in the two paths, the
sign patterns of their segment vectors are the same;

(d) for every pair of corresponding grid segments in the two paths, their segment
vectors are equal; and

(e) the summations (not modulo n′) of all segment vectors in the two paths are
equal.

The last condition is used to enforce that the two paths must wrap around along
each dimension exactly the same number of times on the grid with wraparound.

In one category, there exist paths whose long-range edges are identical but
the grid edges may be different. To compute the probability of a path existing
in a category, we need only consider one path among the paths with identical
long-range edges, since grid edges do not change probabilistic events, and thus
one such path exists if and only if other such paths exist.

We also assume that there are no repeated long-range edges in every path.
For a path that has repeated long-range edges, we can obtain a shorter subpath
without any repeated long-range edges, so that the original path exists if and only
if the new one exists. Since we are going to calculate the probability of paths
not exceeding some length, it is safe to consider only paths without repeated
long-range edges.

Lemma 3.4. There exists a constant c3 (depending on d) such that for every fixed
�, the number of categories of paths from u to v of length � is at most c3

� .

Proof. For each edge on the path, if it is a grid edge, it could be in one of the
d dimensions, and in each dimension, it could be in one of the two opposite
directions, and thus a grid edge has 2d possibilities. If the edge is a long-range
edge, in each dimension its sign has three possibilities, (+1, 0,−1), and so 3d

possibilities altogether for the sign pattern of the long-range segment vector.
Moreover, in the grid with wraparound, we consider each wraparound of the

path in some dimension to be one circuit in that dimension. Then the path can
have at most 2� + 1 different numbers of circuits in each dimension (ranging from
� circuits in one direction up to � circuits in the other direction), so the sum-
mation of all segment vectors has at most (2� + 1)d different values. The choice
of each edge out of 2d + 3d possibilities and the total summation of segment
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vectors determine a category. Therefore, the number of categories is bounded by
(2d + 3d)�(2� + 1)d < c3

� for some c3 .

The above bound on the number of categories is not tight enough to be useful
for later analysis, when the number of long-range segments is small. Thus, we
further bound the number of categories in the following way.

Lemma 3.5. There exists a constant c4 (depending on d) such that for every fixed
� < n′ and k with 1 ≤ k ≤ �, the number of categories of paths from u to v of
length � and having k long-range segments is at most c4

k �(k+1)(d+1)/kkd .

Proof. Similar to the proof of Lemma 3.4, we consider each wraparound of the
path in some dimension to be one circuit in that dimension. For a path from
u to v of length � and containing k long-range segments (1 ≤ k ≤ � < n′), the
summation of all segment vectors has at most (2k + 1)d choices. This is because
the path can have at most 2k + 1 different number of circuits on each dimension
(k circuits in one direction to k circuits in the other direction). We consider the
number of categories for a fixed summation of segment vectors first.

Suppose there are t grid segments, each having a1 , a2 , . . . , at edges (t ≤ k + 1,
ai ≥ 1, a1 + a2 + · · · + at < �). If t = 0, then k = �, and it is easy to see that
there are at most (3d)k categories. Suppose now t ≥ 1. For the ith grid segment
with ai grid edges, its segment vector is such that in each dimension, the only
possible values are −ai,−ai + 1, . . . , 0, . . . , ai − 1, ai . Thus, the number of pos-
sible segment vectors is (2ai + 1)d ≤ 3dad

i . Since each long-range edge has 3d

possible sign patterns, the number of categories for fixed t and a1 , a2 , . . . , at is
at most (3d)k

∏t
i=1 3dad

i < 9(k+1)d(�/t)td , where the arithmetic–geometric mean
inequality is used.

The tuple (a1 , a2 , . . . , at) has fewer than �t possibilities. Considering that there
are (2k + 1)d different possibilities of segment vector summations, the total num-
ber of categories from u to v with length � and containing k long-range edges is
at most

(2k + 1)d

{
(3d)k +

k+1∑
t=1

�t · 9(k+1)d(�/t)td

}

< (2k + 1)d

{
3dk + (k + 1)9(k+1)d max

1≤t≤k+1
{�t(�/t)td}

}

= (2k + 1)d

{
3dk + (k + 1)9(k+1)d�k+1

(
�

k + 1

)(k+1)d
}

< ck
4 · �(k+1)(d+1)

kkd
,

where c4 is a constant depending only on d.
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3.3.3. Probability Calculation. We first give a lemma to calculate the probability of the
existence of a specific edge. For an integer x, we define x to be |x| if x 
= 0 and
1 if x = 0. We also define the function f(n′) as follows:

f(n′) =

{
ln n′, γ = d,

(n′)d−γ , 0 ≤ γ < d.

Lemma 3.6. For two vertices u and v, the probability of the existence of a long-range
undirected edge between u and v is at most c5(x1 · x2 · · ·xd)−γ/d/f(n′), where c5

is a constant depending only on d and γ, and (x1 , x2 , . . . , xd) is the edge vector
if there exists a long-range edge from u to v that depends only on u and v.

Proof. Suppose the nonzero elements of (x1 , x2 , . . . , xd) are (xi1 , xi2 , . . . , xid ′ ) (d′ ≤
d). Let p be the probability of adding an edge from u to v. Then

p =
(|x1 | + |x2 | + · · · + |xd |)−γ

Θ(
∑n ′

i=1
id −1

iγ )
= O

(
|xi1 · xi2 · · ·xid ′ |−γ/d ′∑n ′

i=1 id−1−γ

)

≤ O

(
|xi1 · xi2 · · ·xid ′ |−γ/d∑n ′

i=1 id−1−γ

)
= O

(
(x1 · x2 · · ·xd)−γ/d∑n ′

i=1 id−1−γ

)

= O

(
(x1 · x2 · · ·xd)−γ/d

f(n′)

)
.

Moreover, the edge may also be from v to u, which also has probability p. By
union bound, the probability of the undirected edge (u, v) is O(p).

The following lemma gives the probability that one edge jumps within a local
area.

Lemma 3.7. For a vertex u and a long-range edge (u, v) from u, the probability that
the grid distance between u and v is less than s is at most c6f(s)/f(n′), where
c6 is a constant depending only on d and γ.

Proof. By union bound, the probability is at most

O

(
s∑

i=1

id−1 i−γ

f(n′)

)
= O

(
s∑

i=1

id−1−γ

f(n′)

)
≤ c6

f(s)
f(n′)

,

where c6 is a constant.

Given a path category C, we now calculate the probability of a path in C
existing.
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Lemma 3.8. Given a path category C with length � and k long-range edges, the
probability that there exists a path in C is at most⎧⎨

⎩
ck
5
(
ck
7 kk

)d /
(ln n′)k , γ = d,

ck
5 c

(k−1)(d−γ )
2

/
(n′)d−γ , 0 ≤ γ < d,

where c2 and c5 are the constants given in Lemma 3.6, and c7 is another constant.

Proof. Let the segment vectors of the long-range edges in a path P ∈ C be

(x11 , x12 , . . . , x1d), (x21 , x22 , . . . , x2d), . . . , (xk1 , xk2 , . . . , xkd).

By our definition of a category, all paths in C have the same sign patterns on
the corresponding long-range segment vectors. Thus, we can define the following
sets for the category C:

A+
i = {j | xji > 0, 1 ≤ j ≤ k},

A−
i = {j | xji < 0, 1 ≤ j ≤ k},

A0
i = {j | xji = 0, 1 ≤ j ≤ k},

for all 1 ≤ i ≤ d. For fixed u and v, there is a fixed vector (t1 , t2 , . . . , td) such
that the summation of the segment vectors of all long-range segments in any
P ∈ C is the vector (t1 , t2 , . . . , td). This is because the summation of all segment
vectors from u to v is fixed, and all grid segments have fixed segment vectors.
Therefore, a path in C can be characterized by kd integers x11 , . . . , xkd satisfying
the following for all 1 ≤ i ≤ d:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xji ∈ {1, . . . , n′} for j ∈ A+
i ,

xji ∈ {−n′, . . . ,−1} for j ∈ A−
i ,

xji = 0 for j ∈ A0
i ,∑

j∈A+
i

|xji | −
∑
j∈A−

i

|xji | = ti .

(3.1)

The probability that some path exists is the product of the probability of the
first edge, the probability of the second edge conditioned on the existence of
the first edge, the probability of the third edge conditioned on the existence of
the first two edges, etc. In our model, the probability of an (undirected) edge
conditioned on the existence of other (undirected) edges is less than or equal to
the probability without condition, because each vertex can connect to exactly
one other vertex (when the edge direction is taken into consideration). Hence we
can use the product of the probabilities of all edges as an upper bound for the
probability of a path. By union bound and Lemma 3.6, the probability that a
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path exists in C is at most

∑
all paths in C

k∏
j=1

c5(xj1 · xj2 · · ·xjd)−γ/d

f(n′)

≤ ck
5

fk (n′)

∑
x 1 1 , . . . , x k d :

s a t i s f y in g ( 3 .1 )

k∏
j=1

(xj1 · xj2 · · ·xjd)−γ/d

=
ck
5

fk (n′)
·

d∏
i=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
x 1 i , . . . , x k i :

∑
j ∈A

+
i

x j i −
∑

j ∈A −
i

x j i = t i ;

f o r j ∈A 0
i

, x j i = 1 ; fo r j ∈A
+
i

∪A −
i

, x j i ∈{1 , . . . , n ′}

⎛
⎝ k∏

j=1

xji

⎞
⎠

−γ/d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
ck
5

fk (n′)
·

d∏
i=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
x j i ( j r a n g e s in A

+
i

∪A −
i

) :∑
j ∈A

+
i

x j i −
∑

j ∈A −
i

x j i = t i ; a n d x j i ∈{1 , . . . , n ′}

⎛
⎝ ∏

j∈A+
i ∪A−

i

xji

⎞
⎠

−γ/d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.2)

The inner brace summation is considered to be 1 for A+
i = A−

i = ∅. Now we
consider the following sum for disjoint sets A+ , A− ⊆ {1, 2, . . . , k} (at least one
is not empty) and numbers t ∈ Z, γ ≥ 0, d ≥ 0:

∑
y j ( j r a n g e s in A + ∪A −) :∑

j ∈A +

y j −
∑

j ∈A −
y j = t ; a n d y j ∈{1 , 2 , . . . , n ′}

⎛
⎝ ∏

j∈A+ ∪A−
yj

⎞
⎠

−γ/d

. (3.3)

Case γ = d. If one of A+ and A− is ∅, we need only consider the case that
t 
= 0, because the sum (3.3) is 0 for t = 0. By Lemma 3.2, the sum (3.3) is
bounded by

ck
1
(ln |t|)k

|t| ≤ ck
1 max

x≥1

{
(ln x)k

x

}
=
(

c1k

e

)k

.
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If neither A+ nor A− is ∅, we assume that t ≥ 0. (The calculation for t < 0 is
similar if we exchange A+ and A−.) By Lemma 3.2, the sum (3.3) is bounded by

kn ′∑
s=1

⎛
⎜⎜⎝ ∑

∑
j ∈A −

yj =s

1∏
j∈A−

yj

⎞
⎟⎟⎠
⎛
⎜⎜⎝ ∑

∑
j ∈A +

yj =s+t

1∏
j∈A+

yj

⎞
⎟⎟⎠

≤
kn ′∑
s=1

(c1 ln s)|A
−|−1

s
· (c1 ln(s + t))|A

+ |−1

s + t
≤ ck

1

kn ′∑
s=1

(ln(s + t))k

s(s + t)

= ck
1

kn ′∑
s=1

(
(ln(s + t))k

√
s + t

· 1
s
√

s + t

)
≤ ck

1 · max
x≥1

{
(ln x)k

x0.5

}
·

∞∑
s=1

1
s1.5

= ck
1 · (2k)k

ek
· O(1).

In either case, the sum (3.3) is bounded by ck
7 kk for some constant c7 . By (3.2),

the probability of a path in C is at most ck
5 (ck

7 kk )d/(ln n′)k .
Case 0 ≤ γ < d. By Lemma 3.3, the sum (3.3) is bounded by

(c2n
′)(|A+ |+ |A−|−1)(1−γ/d) ≤ (c2n

′)(k−1)(1−γ/d) .

Therefore, by (3.2), the probability of a path in C is at most

ck
5

(n′)k(d−γ ) ·
(
(c2n

′)(k−1)(1−γ/d)
)d

=
ck
5 c

(k−1)(d−γ )
2

(n′)d−γ
.

Finally, we apply Lemmas 3.4, 3.5, 3.7, and 3.8 to show that the probability
that at least one pair of vertices are connected by a short path with at least one
long-range edge is vanishingly small.

Lemma 3.9. For any two vertices u and v, the probability that a path exists con-
necting u and v with at least one long-range edge and total length at most � is
o(1) when � ≤ (log n′)1/(1.5(d+1)+ε) (ε > 0) for γ = d; and � < c log n′ (c is some
constant depending only on d and γ) for 0 ≤ γ < d.

Proof. We first study the probability of a path with exact length �, and we divide
it into the following two cases.

Case γ = d. If k = 1, the probability that a path from u to v with length �

exists is at most O(�dc6 ln(3�)/ ln n′) = O(�d ln �/ ln n′). To see this, we divide
the path into three segments: a grid segment followed by one long-range edge,
then followed by another grid segment. The first grid segment can reach at most
O(�d) destinations. For each such destination w, the long-range edge has to reach
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some vertex within grid distance � of vertex v. By the triangle inequality, it must
be within grid distance 3� of vertex w, since the distances between v and u and
between u and w are both at most �.

By Lemma 3.7, we know that this probability is c6 ln(3�)/ ln n′. Therefore, the
above statement holds.

For k ≥ 2, we simply combine Lemmas 3.5 and 3.8. Thus, the probability that
a path with length � exists is at most

O

(
�d ln �

ln n′

)
+

�∑
k=2

ck
4 �(k+1)(d+1)

kkd
· ck

5
(
ck
7 kk

)d

(ln n′)k

= O

(
�d ln �

ln n′

)
+

�∑
k=2

(
c4c5c

d
7 · �(d+1)(1+ 1

k )

ln n′

)k

≤ O

(
�d ln �

ln n′

)
+

�∑
k=2

(
c4c5c

d
7 · �1.5(d+1)

lnn′

)k

.

This probability is o(1) when � ≤ (log n′)1/(1.5(d+1)+ε) for any ε > 0.
Case 0 ≤ γ < d. In this case, we combine Lemmas 3.4 and 3.8. The probability

that a path with length � exists is at most

c3
� · max

1≤k≤�

{
ck
5 c

(k−1)(d−γ )
2

(n′)d−γ

}
≤ (c3c5c

d−γ
2 )�

(n′)d−γ
,

where the inequality is based on c2 , c5 ≥ 1, which is obviously the case. This
probability is o(1) when � < c log n′ for some properly chosen constant c, which
depends only on d and γ.

We now consider the case of path length less than �. Let w be a grid neighbor
of v. For any path connecting u and v with length less than �, we can add grid
edges (v, w) followed by (w, v), to increase the path length to either � − 1 or �.
Thus, the probability that a path of length at most � exists is the same as the
probability that a path of length � − 1 or � exists. The case of � − 1 is exactly
like the case of � argued above. Therefore, the lemma holds.

With Lemma 3.9, we are ready to prove Theorem 3.1 for the case d ≥ 2 and
0 ≤ γ ≤ d.

Proof of Theorem 3.1 for the case d ≥ 2 and 0 ≤ γ ≤ d. We define

� =

{
�(log n′)1/(1.5(d+1)+ε)/2� when γ = d,

�c log n′/2� when 0 ≤ γ < d,

where c is the constant determined by Lemma 3.9. In the base grid, find any
square in any dimension with one side of length equal to �. Consider the four
vertices of the square. By Lemma 3.9, the probability that a pair of vertices of
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this square are connected by a path with at least one long-range edge and total
length at most 2� is o(1). Thus by union bound, the distance between any pair
of these four vertices is exactly their grid distance, with probability 1 − o(1).
This means that the δ value of these four vertices is �, with probability 1 − o(1).
Therefore, we know that with probability 1 − o(1),

δ(KSW(n, d, γ)) = Ω
(
(log n′)1/(1.5(d+1)+ε)

)
= Ω

(
(log n)1/(1.5(d+1)+ε)

)
when d ≥ 2 and γ = d, and

δ(KSW(n, d, γ)) = Ω(log n′) = Ω(log n)

when d ≥ 2 and 0 ≤ γ < d.

Remark 3.10. (The limitation of this approach.) We already have a tight lower bound for
0 ≤ γ < d. However, the lower bound Ω((log n)1/(1.5(d+1)+ε)) for γ = d does not
match the upper bound O(log n). We show below that the lower bound can never
be improved to Ω(log n) by the above technique of proving that the grid distance
is the shortest on every small square (with high probability).

Consider a KSW graph with γ = d. For an � × � square S, let u be its upper
left vertex and let v be its lower right vertex. Similar to the proof in Lemma 3.7,
the probability of existence of an edge linking any w to the �/2 × �/2 square
on the lower right side of w within the square S (but excluding w’s two grid
neighbors in the square) is

q = Θ

⎛
⎝ �/2∑

i=2

i · i−d

ln n′

⎞
⎠ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Θ
(

log �

log n′

)
d = 2,

Θ
(

1
log n′

)
d ≥ 3.

Consider the �/2 × �/2 square on the lower right side of u, which is the upper
left quadrant of the original square. The probability that at least one vertex w in
this quadrant links to its lower right �/2 × �/2 square is 1 − (1 − q)�/2×�/2 . This
probability is almost 1 when

� = ω

(√
log n′

log log n′

)
, for d = 2,

or � = ω(
√

log n′), for d ≥ 3. If there exists such a vertex w in the upper right
quadrant, suppose it links to a vertex x in its lower right �/2 × �/2 square. Then
x must also be in the original square S, and we can have a path from u to w

following the grid path, then the long-range edge from w to x, and then the grid
path from x to v. This path connects u and v and must be shorter than the grid
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paths from u to v. Therefore, our technique cannot improve the lower bound to

ω

(√
log n′

log log n′

)
= ω

(√
log n

log log n

)
, for d = 2,

or ω(
√

log n′) = ω(
√

log n), for d ≥ 3.

3.3.4. The Case d = 1 and 0 ≤ γ ≤ 1. In this section, we give lower bounds on δ for
the one-dimensional KSW model (based on an n-vertex ring). Let the n vertices
be v0 , . . . , vn−1 . Let

�0 =

⎧⎨
⎩
⌊
(log n)1/(1.5(d+1)+ε)

⌋
when γ = 1,

�c log n� when 0 ≤ γ < 1,

where c is the number determined in Lemma 3.9.
The idea is to find a long-range edge e0 between two vertices with grid distance

�0 . Since e0 forms a local ring with the original grid, we can give a lower bound of
δ such that the ring distances (with respect to the grid edges and e0) are minimal
even after adding the long-range edges. We first calculate the probability of ring
distances being minimal under the condition of existing e0 .

We divide the construction of a KSW graph into two stages: (1) every vertex
links to exactly one other vertex according to some distribution; and (2) we
ignore the edge direction and consider the graph undirected. Let Ei (0 ≤ i ≤
n − 1) be the event that vi links to v(i+�0 mod n) in the first stage. Under the
condition that Ei happens, v(i+�0 mod n) is still free to link to any vertex. The
events E0 , E1 , . . . , En−1 are independent.

Lemma 3.11. Under the condition that Ei happens (vi links to v(i+�0 mod n)), for any
two vertices u,w on the curve from vi to v(i+�0 mod n) (exclusive), the conditional
probability of a path existing that connects u and w with at least one long-range
edge other than (vi, v(i+�0 mod n)) and path length at most �0 is o(1).

Proof. Let e0 be the edge (vi, v(i+�0 mod n)). We still follow the arguments for d ≥ 2
and 0 ≤ γ ≤ d, but we change the classification of paths slightly: now e0 is a
type of edge by itself, and thus together with grid edges and long-range edges,
we have three types of edges and three types of corresponding segments. For
each original category of paths with length � and k long-range segments defined
in the previous section, we further divide it into at most k + 1 categories, based
on whether e0 was the first, second, . . . , or kth long-range segment, or e0 does
not appear in the path. The number of long-range edges in a category with e0 is
decreased by 1. For the categories with only grid edges and e0 , those paths now
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have no long-range edge, and they exist with conditional probability 1; hence
they will not be calculated.

For Lemma 3.4, the number of categories is increased by a factor of at most
� + 1. For Lemma 3.5, the number of categories is increased by a factor of at
most k + 1. Thus, we have only to properly adjust the constants c3 and c4 in
these two lemmas to make them still hold. Lemma 3.6 is not changed except
that e0 is no longer a long-range edge and the lemma is not applicable on e0 .
Lemma 3.7 is not affected. In the proof of Lemma 3.8, a category without e0 can
be calculated normally. For a category with e0 , the number of long-range edges
is decreased by 1, as stated above. One can see that all the arguments still hold
by changing the summation of long-range edges (ti in (3.1)) to contain e0 .

For Lemma 3.9, only the case γ = d and k = 1 (one long-range edge) needs
some modification. If the path does not contain e0 , the calculation still holds.
Otherwise, we can divide the path into five segments: grid, long-range, grid, e0 ,
grid (or grid, e0 , grid, long-range, grid). We just consider the three consecutive
segments grid, e0 , grid as a whole, which contains O(�) edges and can reach
O(�d) = O(�) destinations. One can see that the previous argument still holds.
Therefore, the consequence of Lemma 3.9 still holds.

With Lemma 3.11, we give the proof of Theorem 3.1 for the case d = 1 and
0 ≤ γ ≤ 1.

Proof of Theorem 3.1 for the case d = 1 and 0 ≤ γ ≤ 1. Let F be the event δ ≥ 1
4 �0 − 3.

We first show that Pr{F | Ei} = 1 − o(1). Pick four vertices

Ai = v(i+� 1
8 �0 � mod n) , Bi = v(i+� 3

8 �0 � mod n) ,

Ci = v(i+� 5
8 �0 � mod n) , Di = v(i+� 7

8 �0 � mod n) .

By Lemma 3.11 and union bound, we know that with probability 1 − o(1),
the distances between every pair of vertices are the ring (grid edges plus
(vi, v(i+�0 mod n))) distances. That is, the distances between AiBi , BiCi , CiDi ,
DiAi are roughly 1

4 �0 (off by at most 2), and the distances between AiCi and
BiDi are roughly 1

2 �0 (off by at most 1). Therefore, by considering the four
vertices Ai,Bi, Ci,Di , we have δ at least

1
2

(
1
2
�0 − 1 +

1
2
�0 − 1 − 1

4
�0 − 2 − 1

4
�0 − 2

)
=

1
4
�0 − 3

with conditional probability 1 − o(1).
For every Ei , the probability that vi links to v(i+�0 mod n) is

Pr{Ei} = Θ
(

�−γ
0

f(n)

)
=

⎧⎨
⎩

Θ
(
(log n)−

2 + ε
3 + ε

)
γ = 1,

Θ
(
log n/n1−γ

)
0 ≤ γ < 1.
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Define this probability as q. We have

Pr{F and Ei} = Pr{F | Ei}Pr{Ei} = (1 − o(1))q.

Let K be the random variable denoting the number of Ei ’s that occur. We
define m = E[K], and we have m = nq. One can check that m = poly(n) for
both cases γ = 1 and 0 ≤ γ < 1. By the Chernoff bound,

Pr
{|K − m| ≤ m0.6} > 1 − 2e−(m−0 . 4 )2 /4·m = 1 − 2e−m 0 . 2 /4 .

Hence with very high probability, K is close to m. Let G denote the event that
m − m0.6 ≤ K ≤ m + m0.6 . We show that Pr{F and Ei and G} is very close to
Pr{F and Ei}. In fact,

Pr{F and Ei and G} ≥ Pr{F and Ei} − Pr{not G} = (1 − o(1)) Pr{F and Ei},

because

Pr{not G} < 2e−m 0 . 2 /4 = 2e−poly(n)

is much smaller than

Pr{F and Ei} = (1 − o(1))q = ω(1/n).

On the other hand, it is straightforward that

Pr{F and Ei and G} ≤ Pr{F and Ei}.

Hence Pr{F and Ei and G} differs from Pr{F and Ei} by a factor at most (1 −
o(1)), and

Pr{F and Ei and G} = (1 − o(1))q.

For every r = r0r1 · · · rn−1 ∈ {0, 1}n , define Hr to be the event that Ej happens
iff rj = 1 for all j = 0, 1, . . . , n − 1. We can see that the Hr are mutually exclusive
for r ∈ {0, 1}n . Hence

Pr{F and Ei and G} =
m+m 0 . 6∑

k=m−m 0 . 6

∑
r ∈{0 , 1 }n

r i = 1 a n d r h a s k 1 ’ s

Pr{F and Hr}.
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Therefore,

Pr{F and G} =
m+m 0 . 6∑

k=m−m 0 . 6

∑
r ∈{0 , 1 }n

r h a s k 1 ’ s

Pr{F and Hr}

=
m+m 0 . 6∑

k=m−m 0 . 6

1
k
·

n−1∑
i=0

∑
r ∈{0 , 1 }n

r i = 1 a n d r h a s k 1 ’ s

Pr{F and Hr}

>
1

m + m0.6 ·
n−1∑
i=0

m+m 0 . 6∑
k=m−m 0 . 6

∑
r ∈{0 , 1 }n

r i = 1 a n d r h a s k 1 ’ s

Pr{F and Hr}

=
1

m + m0.6

n−1∑
i=0

Pr{F and Ei and G}

=
n(1 − o(1))q
m + m0.6 =

m(1 − o(1))
m + m0.6 = 1 − o(1).

The probability that δ ≥ 1
4 �0 − 3 = Ω(�0) is

Pr{F} ≥ Pr{F and G} = 1 − o(1).

The proof is complete.

3.3.5. The Case d = 1 and γ > 3. We first show that with high probability, all
long-range edges connect two vertices with grid distance o(n), for general d and
γ > 2d.

Lemma 3.12. In a random graph from KSW(n, d, γ) with γ > 2d, with probability
1 − o(1) there is no long-range edge that connects two vertices with grid distance
larger than n

1
γ −d +ε , where ε is any positive number.

Proof. For a vertex u, the probability that the long-range edge from u links to
somewhere with distance longer than �0 = n

1
γ −d +ε from u is

O

⎛
⎝n1 / d∑

i=�0

id−1 i−γ∑n1 / d

j=1 jd−1j−γ

⎞
⎠ = O

( ∞∑
i=�0

id−1−γ

)
= O

(
�d−γ
0

)
.

By union bound, the probability that such u exists is

O
(
n�d−γ

0

)
= O

(
n · n( 1

γ −d +ε)(d−γ )
)

= O
(
nε(d−γ )

)
= o(1).

Therefore, with probability 1 − o(1), such u does not exist.
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Given a graph G in KSW(n, d, γ), let �0(G) be the largest grid distance of
two vertices connected by a long-range edge in G. From the above result, we
know that when γ > 3d, �0(G) < n

1
γ −d +ε = o(

√
n1/d) with high probability. For

the rest of this section, with d = 1, we fix G to be any graph in KSW(n, 1, γ)
with �0(G) < n

1
γ −1 +ε , and show that δ(G) = Ω(nc) for some constant c. Since G

is fixed, we will use �0 to denote �0(G).
We now return to the one-dimensional grid with wraparound, which is

a ring with vertices v0 , v1 , . . . , vn−1 . Note that in the one-dimensional case,
the edge vector defined in Section 3.3.1 degenerates to a scalar value from
{−�n

2 �,−�n
2 � + 1, . . . , �n−1

2 �}. We arrange v0 , v1 , . . . , vn−1 clockwise on the ring.
Then a positive edge scalar corresponds to a clockwise hop, while a negative edge
scalar corresponds to a counterclockwise hop.

Let A = v0 and B = v�n/2� be two specific vertices. We define two kinds of
paths between A and B: a positive path is one in which the summation of edge
scalars (not taken modulo n) is positive, while a negative path is one in which
the summation of edge scalars (not taken modulo n) is negative.

Lemma 3.13. There exists a positive path from A to B that does not go through
v�n/2�+1 , v�n/2�+2 , . . ., vn−1 , and the length is at most 2�0 longer than the shortest
positive path from A to B. Similarly, there exists a negative path from A to B

that does not go through v1 , v2 , . . . , v�n/2�−1 , and the length is at most 2�0 longer
than the shortest negative path from A to B.

Proof. We give only the proof for the positive-path case. Consider any short-
est positive path P from A to B. We first establish the following claim. Let
SA = {v1 , . . . , v�0 } be the set of �0 consecutive vertices clockwise to A, and
SB = {v�n/2�−�0 , v�n/2�−�0 +1 , . . . , v�n/2�−1} the set of �0 consecutive vertices coun-
terclockwise to B.

Claim 3.14. There must exist a subpath in P from a vertex u ∈ SA to a vertex
w ∈ SB that does not go through v�n/2�+1 , v�n/2�+2 , . . . , vn−1 .

Suppose there are m edges in P. Let si (0 ≤ i ≤ m) denote the sum of the first
i edge scalars in P (not taken modulo n). Initially, we have s0 = 0, and the final
value sm is kn + �n/2� for some integer k ≥ 0. One can also see that the position
after going through the first i edges in P is at v(si mod n) . Let i1 be the smallest
integer such that si1 ≥ �n/2� (such exists, because sm ≥ �n/2�), and let i2 be
the largest integer such that i2 < i1 and si2 ≤ 0 (such exists, because s0 = 0).

We consider the (i2 + 1)th edge, which begins at v(si 2 mod n) for some si2 ≤
0 and ends at v(si 2 + 1 mod n) for some si2 +1 > 0. The number si2 +1 is at most
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si2 + �0 , since no edge is longer than �0 . Therefore, si2 +1 must be a number
in (0, �0 ], and v(si 2 + 1 mod n) must be in SA . We choose u = v(si 2 + 1 mod n) ∈ SA .
Similarly, pick w = si1 −1 , which is the beginning point of the i1th edge. We have
w ∈ SB . The intermediate values si2 +1 , si2 +2 , . . . , si1 −1 are all in the interval
(0, �n/2�) by the definitions of i1 and i2 . That is, for all j such that i2 + 1 ≤ j ≤
i1 − 1, we have sj mod n = sj , and the corresponding vertex v(sj mod n) is vsj

∈
{v1 , v2 , . . . , v�n/2�−1}. Therefore, the subpath from u to w does not go through
v�n/2�+1, v�n/2�+2, . . . , vn−1 , and the claim holds.

With the claim, we can construct a positive path P′ that uses ring edges from
A to u, then uses the subpath in the claim from u to w, and then from w to
B using ring edges. The length of P′ is at most 2�0 longer than P, the shortest
positive path from A to B.

We use P+
AB and P−

AB to denote the two paths stated in the above lemma.
According to this lemma, one of P+

AB and P−
AB is at most 2�0 longer than the

shortest path between A and B.
Let C be the midpoint of P+

AB (take a vertex nearest the middle if the path
has an odd number of edges), and let P+

AC , P+
C B be the two subpaths from A to

C and C to B. Similarly, let D be the midpoint of P−
AB , and let P−

AD , P−
DB be

the two subpaths.

Lemma 3.15. The paths P+
AC , P+

C B , P−
AD , and P−

DB are at most 3�0 + 1 longer than
the shortest paths between corresponding pairs of vertices.

Proof. We give the proof only for P+
AC . Suppose that it is not true, and the shortest

path P∗
AC from A to C is at least 3l0 + 2 shorter than P+

AC . The path P∗
AC must

be at least 3�0 + 1 shorter than P+
C B , because C is the point nearest the middle

of P+
AB .

Consider the last time that the path P∗
AC gets into the range

{v0 , v1 , . . . , v�n/2�}. The subpath of P∗
AC from that point to C must be one of

the following cases:

� It is a subpath from a vertex A′ ∈ {v0 , v1 , . . . , v�0 } to C not going through
v�n/2�+1, v�n/2�+2, . . . , vn−1 . Replace P+

AC by the path from A to A′ through
ring edges concatenated with the subpath of P∗

AC from A′ to C. This will
cause the length of P+

AB to decrease by at least 3�0 + 2 − �0 > 2�0 , which is
impossible by Lemma 3.13.

� It is a subpath from a vertex B′ ∈ {v�n/2�−�0 , v�n/2�−�0 +1 , . . . , v�n/2�} to C

that does not go through v�n/2�+1, v�n/2�+2, . . . , vn−1 . Replace P+
C B by the

reverse of this subpath of P∗
AC from C to B′ concatenated with ring edges
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from B′ to B. This will cause the length of P+
AB to decrease by at least

3�0 + 1 − �0 > 2�0 , which is impossible by Lemma 3.13.

Therefore the lemma holds.

Next we consider the shortest path between C and D.

Lemma 3.16. Either the concatenation of P+
C B and reversed P−

DB , or the concatena-
tion of reversed P+

AC and P−
DA , is at most 8�0 + 2 longer than the shortest path

between C and D.

Proof. The shortest path from C to D (say P∗
C D ) must go through either B’s

neighborhood v�n/2�, v�n/2�+1, . . . , v�n/2�+�0 or A’s neighborhood v0 , v1 , . . . , v�0 .
Without loss of generality, we assume that it goes through the point B′ in B’s
neighborhood. Use P∗

C B ′ and P∗
B ′D to denote the two subpaths from C to B′ and

B′ to D respectively. They must also be shortest paths of CB′ and B′D.
The path P∗

C B ′ is at most �0 shorter than the shortest path between C and
B. Otherwise, the path P∗

C B ′ concatenated with ring edges from B′ to B would
be shorter than the shortest path. Similarly, P∗

B ′D is at most �0 shorter than
the shortest path between B and D. Therefore, the shortest path between C

and D is at most 2�0 shorter than the concatenation of shortest paths of CB

and BD. Then by Lemma 3.15, the summation of P+
C B and P−

DB is at most
2(3�0 + 1) + 2�0 = 8�0 + 2 longer than the shortest path between C and D.

We have the following corollary, since the lengths of the two paths in this
lemma differ by at most 2.

Corollary 3.17. The concatenation of P+
C B and reversed P−

DB , and the concatenation
of reversed P+

AC and P−
DA , are both at most 8�0 + 4 longer than the shortest path

between C and D.

Now we can prove the lower bound of δ for this case.

Proof of Theorem 3.1 for the case d = 1 and γ > 3. Consider the four points A, B, C,
and D defined above. Let d(x, y) denote the distance between vertices x and y.
We can see the following consequences about pairwise distances:

(a) d(A,B) ≥ �n/2�/�0 ;

(b) d(C,D) ≥ |P+
C B | + |P−

DB | − (8�0 + 4) ≥ |P+
AC | − 1 + |P−

DB | − (8�0 + 4) ≥
d(A,C) + d(D,B) − (8�0 + 5), where the first inequality is due to Corol-
lary 3.17;

(c) similarly, d(C,D) ≥ d(A,D) + d(C,B) − (8�0 + 5).
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Therefore, we have both

d(A,B) + d(C,D) ≥ d(A,C) + d(D,B) + �n/2�/�0 − (8�0 + 5)

and

d(A,B) + d(C,D) ≥ d(A,D) + d(C,B) + �n/2�/�0 − (8�0 + 5).

For �0 < n
1

γ −1 +ε with any sufficiently small ε > 0 and sufficiently large n, we
have

�n/2�
�0

� 8�0 + 5,

and thus d(A,B) + d(C,D) is the largest distance pair. In this case,

δ ≥ �n/2�
�0

− (8�0 + 5).

By Lemma 3.12, with probability 1 − o(1) we have �0 < n
1

γ −1 +ε . Therefore, with
probability 1 − o(1),

δ(KSW(n, 1, γ)) = Ω
(
n/n

1
γ −1 +ε

)
= Ω

(
n

γ −2
γ −1 −ε

)
for d = 1, γ > 3, and any sufficiently small ε > 0. Since for every ε′ > ε > 0, we
have

n
γ −2
γ −1 −ε = Ω

(
n

γ −2
γ −1 −ε ′)

,

it follows that

δ(KSW(n, 1, γ)) = Ω
(
n

γ −2
γ −1 −ε

)
for every ε > 0.

3.4. Extensions of the KSW Model

Our analysis also holds for some variants of the KSW model. In this section,
we study one variant of the underlying structure, grid without wraparound, and
two variants of edge linking: multiple edges for each vertex and linking edges
independently.

3.4.1. Grid without Wraparound. We modify our analysis so that the first two results
of Theorem 3.1 still hold. For the case of d ≥ 2 and 0 ≤ γ ≤ d (Section 3.3.1),
the changes are as follows. For a path from u to v, we divide it into segments
as before. Elements in an edge vector are now in {−n′,−n′ + 1, . . . , n′ − 1, n′}.
Recall the last condition by which we define that two paths from u to v belong
to the same category: the summations (not modulo n′) of all segment vectors in
the two paths are equal. This is always satisfied for grid without wraparound,
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because the summation of all segment vectors depends only on the positions of
u and v.

In the proofs of Lemmas 3.4 and 3.5, the summation of all segment vectors is
fixed, rather than there being (2� + 1)d or (2k + 1)d choices respectively. Hence
the upper bounds given in Lemmas 3.4 and 3.5 still hold. In Lemma 3.6, an edge
between u and v can be from u to v or from v to u. The probabilities of the two
cases may differ by a constant factor in the case of grid without wraparound.
Hence the probability of there existing an edge between u and v is changed by
at most a constant factor, and Lemma 3.6 still holds. One can verify that the
rest of the analysis in Section 3.3.1 still holds. For the case d = 1 and 0 ≤ γ ≤ 1
(Section 3.3.4), the only change is that the event Ei , which is the event that
vi links to vi+�0 , applies only when i = 0, 1, . . . , n − �0 − 1. Since �0 = O(log n)
is much smaller than n, there are still almost n events Ei , and the argument
requires no significant change. Hence Theorem 3.1 still holds for the cases d ≥ 1
and 0 ≤ γ ≤ d.

3.4.2. Multiple Edges for Each Vertex. In this model, each vertex links a constant, say
d0 , number of edges according to the same distribution with which u links to
v with probability dB (u, v)−γ /

∑
v ′ dB (u, v′)−γ . We show that all our previous

analysis still holds with some slight changes. For the case d ≥ 2 and 1 ≤ γ ≤ d

(Section 3.3.1), Lemma 3.6 still holds, since the probability of the edge (u, v) is
increased by at most d0 times using union bound. And the proof of Lemma 3.7
still works, because O(id−1i−γ /f(n′)) is an upper bound on the probability that
u links to some vertex at distance i, again by union bound. For the case d = 1
and 0 ≤ γ ≤ 1 (Section 3.3.4), we define Ei to be the event that at least one of
vi ’s edges links to v(i+�0 mod n) . One can see that Pr{Ei} is still Θ(�−γ

0 /f(n)),
and the remainder of the argument also holds. For the case d = 1 and γ > 3
(Section 3.3.5), Lemma 3.12 still holds for the same reason as Lemma 3.7, namely
that

O

(
id−1 i−γ∑n1 / d

j=1 jd−1j−γ

)

is an upper bound on the probability that u links to some vertex at distance i.
One can verify that all the results of Theorem 3.1 still hold under this change.

3.4.3. Linking Edges Independently. In this model, all edges exist independently. The
edge between (u, v) exists with probability

d0 · dB (u, v)−γ∑n1 / d

i=1 id−1−γ
,
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where d0 is some constant. We also give the changes in our analysis. Lemma 3.6
is straightforward in this model. Lemmas 3.7 and 3.12 still hold for the same
reason as above. In the proof of Lemma 3.8, the first line of (3.2), which uses
the product of edges’ probabilities for an upper bound of the path’s probability,
still holds, because it is now just the product of independent events. For the
case d = 1 and 0 ≤ γ ≤ 1 (Section 3.3.4), we define Ei to be the event that the
edge (vi, v(i+�0 mod n)) exists. One can see that the analysis remains valid. All
the results of Theorem 3.1 still hold under this change.

In summary, Theorem 3.1 for the case d ≥ 1 and 0 ≤ γ ≤ d still holds for grid
without wraparound, and Theorem 3.1 for all cases still holds for both variants
of edge linking. The variants of edge linking can be combined with grid without
wraparound, for which Theorem 3.1 still holds for the case d ≥ 1 and 0 ≤ γ ≤ d.

4. δ-Hyperbolicity of Ringed Trees

In this section, we consider the δ-hyperbolicity of graphs constructed according
to a variant of the small-world graph model, in which long-range edges are added
on top of a base graph that is a binary tree or treelike low-δ graph. In particular,
we will analyze the effect on the δ-hyperbolicity of adding long-range links to
a ringed-tree base graph; and then we will consider several related extensions,
including an extension to the binary tree.

Definition 4.1. (Ringed tree.) A ringed tree of level k, denoted by RT(k), is a fully
binary tree with k levels (counting the root as a level), in which all vertices at
the same level are connected by a ring. More precisely, we can use a binary string
to represent each vertex in the tree such that the root (at level 0) is represented
by an empty string, and the left and right children of a vertex with string σ are
represented by σ0 (concatenating 0 after string σ) and σ1 (concatenating 1 after
string σ), respectively. Then, at each level i = 1, 2, . . . , k − 1, we connect two
vertices u and v represented by binary strings σu and σv if (σu + 1) mod 2i = σv ,
where the addition treats the binary strings as the integers they represent. As
a convention, we say that a level is higher if it has a smaller level number and
thus is closer to the root.

Figure 1(d) illustrates the ringed tree RT(6). Note that the diameter of the
ringed tree RT(k) is Θ(log n), where n = 2k − 1 is the number of vertices in
RT(k), and we will use RT(∞) to denote the infinite ringed tree as k in RT(k)
goes to infinity. Thus, a ringed tree may be thought of as a soft version of a
binary tree, and to some extent, one can view a ringed tree as an idealized
picture reflecting the hierarchical structure in real networks coupled with local
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neighborhood connections, such as Internet autonomous system (AS) networks,
which have both a hierarchical structure of different levels of autonomous systems
and peer connections based on geographical proximity.

4.1. Results and Their Implications

A visual comparison of the ringed tree of Figure 1(d) with the tessellation of
the Poincaré disk (Figure 1(b)) suggests that the ringed tree can been seen as
an approximate tessellation or coarsening of the Poincaré disk. Our first result
in this section makes this precise; in particular, we show that the infinite ringed
tree and the Poincaré disk are quasi-isometric.

Theorem 4.2. The infinite ringed tree RT(∞) and the Poincaré disk are quasi-
isometric.

Thus, by Proposition 2.6, we immediately have the following result.

Corollary 4.3. There exists a constant c such that for all k, the ringed tree RT(k)
is c-hyperbolic.

Alternatively, we also provide a direct proof of this corollary (Section 4.3.3) to
show that the ringed tree RT(k) is Rips 5-hyperbolic, and Gromov 40-hyperbolic
in terms of the four-point condition. Our direct analysis also provides important
properties of ringed trees that are used in later analyses.

Next, we address the question whether long-range edges added at each level
of the ring maintain or destroy the hyperbolicity of the base graph. Given two
vertices u and v at some level t of the ringed tree, we define the ring distance
between u and v, denoted by dR (u, v), to be the length of the shorter path
connecting u and v purely through the ring edges at the level t.

Given any function f from positive integers to positive integers, let RT(k, f)
denote the class of graphs constructed by adding long-range edges on the ringed
tree RT(k) such that for each long-range edge (u, v) connecting vertices u and
v at the same level, dR (u, v) ≤ f(n), where n = 2k − 1 is the number of vertices
in the ringed tree RT(k). Since long-range edges do not reduce distances from
the root to any other vertices, the diameter of every graph in RT(k, f) is still
Θ(log n). Define δ(RT(k, f)) = maxG∈RT(k,f ) δ(G).

Our second result (used in the proof of the first part of our next result, but
explicitly stated here, since it is also of independent interest) is the following.

Theorem 4.4. δ(RT(k, f)) = O(log f(n)) for every positive function f and positive
integer k, where n = 2k − 1 is the number of vertices in the ringed tree RT(k).
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This result indicates that if the long-range edges added do not span distant
vertices, then the graph should have good hyperbolicity. In particular, if we take
f(n) = log n, then the theorem implies that the class RT(k, f) is logarithmically
hyperbolic. The theorem covers all (deterministic) graphs in the class RT(k, f).
We can extend it to random graphs such that if we can show that with high
probability, the random graph is in the class RT(k, f), then we know that the
hyperbolic δ of the random graph is O(log f(n)) with high probability. The first
result in the next theorem is proved using this approach.

Next, we consider adding random edges between two vertices at the outermost
level, i.e., level k − 1, such that the probability of connecting two vertices u and
v is determined by a function g(u, v). Let Vk−1 denote the set of vertices at level
k − 1, i.e., the leaves of the original binary tree. Given a real-valued positive
function g(u, v), let RRT(k, g) denote a random graph constructed as follows.
We start with the ringed tree RT(k), and then for each vertex v ∈ Vk−1 , we add
one long-range edge to a vertex u with probability proportional to g(u, v), that
is, with probability g(u, v)ρ−1

v , where ρv =
∑

u∈Vk −1
g(u, v).

We study three families of functions g, each of which has the characteristic
that vertices closer to one another (by some measure) are more likely to be con-
nected by a long-range edge. The first two families use the ring distance dR (u, v)
as the closeness measure. In particular, the first family uses an exponential decay
function g1(u, v) = e−αdR (u,v ) . The second family uses a power-law decay func-
tion g2(u, v) = dR (u, v)−α , where α > 0. The third family uses the height of the
lowest common ancestor of u and v, denoted by h(u, v), as the closeness measure,
and the function is g3 = 2−αh(u,v ) .

Note that this last probability function matches the function used by Kleinberg
in a small-world model based on the tree structure [Kleinberg 02]. Moreover,
although g3 and g2 are similar, in the ringed tree they are not the same, since for
two leaf nodes u and v, dR (u, v) may not be the same as 2h(u,v ) . For example,
let u be the rightmost leaf of the left subtree of the root (i.e., u is represented as
the string 01 . . . 1), and let v be the leftmost leaf of the right subtree of the root
(i.e., v is represented as the string 10 . . . 0). Then dR (u, v) = 1, while h(u, v) =
Θ(log n).

The following theorem summarizes the hyperbolicity behavior of these three
families of random ringed trees.

Theorem 4.5. Consider the following families of functions (of variables u and v) for
random ringed trees RRT(k, g), for a positive integer k and positive real number
α. With probability 1 − o(1) (as n tends to infinity), we have

(1) δ(RRT(k, e−αdR (u,v ))) = O(log log n),
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(2) δ(RRT(k, dR (u, v)−α )) = Θ(log n),

(3) δ(RRT(k, 2−αh(u,v ))) = Θ(log n),

where n = 2k − 1 is the number of vertices in the ringed tree RT(k).

This theorem states that when the random long-range edges are selected
using an exponential decay function based on the ring distance measure, the
resulting graph is logarithmically hyperbolic, i.e., the constant hyperbolicity of
the original base graph is degraded only slightly; but when a power-law decay
function based on the ring distance measure or an exponential decay function
based on common ancestor measure is used, then hyperbolicity is destroyed, and
the resulting graph is not hyperbolic. One may notice that the function forms
in (1) and (3) above are similar, but the results are different. This is because
with height h(u, v), the subtree actually covers Θ(2h(u,v )) leaves, and thus (3)
is naturally closer to the power-law function of (2). Intuitively, when it is more
likely for a long-range edge to connect two distant vertices, such an edge creates
a shortcut for many internal tree nodes, so that many shortest paths will go
through this shortcut instead of traversing tree nodes. (In Internet routing, such
paths are referred to as valley routes).

Finally, as a comparison, we also study the hyperbolicity of random binary
trees RBT(k, g), which are the same as random ringed trees RRT(k, g) except
that we remove all ring edges.

Theorem 4.6. Consider the following families of functions (of the variables u and v)
for random binary trees RBT(k, g), for a positive integer k and positive real
number α. Then with probability 1 − o(1) (as n tends to infinity), we have

δ
(
RBT

(
k, e−αdR (u,v )

))
= δ

(
RBT

(
k, dR (u, v)−α))

= δ
(
RBT

(
k, 2−αh(u,v )

))
= Θ(log n),

where n = 2k − 1 is the number of vertices in the binary tree RBT(k, g).

Thus in this case, the original hyperbolicity of the base graph (δ = 0 for the
binary tree) is destroyed. Comparing with Theorem 4.5, we see that our results
above suggest that the “softening” of the hyperbolicity provided by the rings is
essential in maintaining good hyperbolicity: with rings, random ringed trees with
exponential decay function (depending on the ringed distance) are logarithmi-
cally hyperbolic, but without the rings, the resulting graphs are not hyperbolic.
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4.2. Outline of the Analysis

In this subsection, we provide a summary of the proofs of the four theorems in
Section 4.1. For Theorem 4.2, we provide an embedding of the ringed tree in
the Poincaré disk, intuitively similar to the picture we show in Figure 1(d), and
prove that it is a quasi-isometry.

For the analysis of δ-hyperbolicity, we apply the Rips condition, which is equiv-
alent to Gromov’s four-point condition up to a constant factor.

For any two vertices u and v on the ringed tree RT(k), we define the canonical
geodesic 〈u, v〉 to be the geodesic from u to v such that the geodesic always
first goes upward, then follows ring edges, and then goes downward (any of
these segments may be omitted). We show that the canonical geodesic 〈u, v〉 and
any other geodesic [u, v] are within distance 1 of each other, and any triangle
Δ(u, v, w) formed by three canonical geodesics 〈u, v〉, 〈u,w〉, and 〈v, w〉 (called
canonical triangles) are 3-slim. This immediately implies that every geodesic
triangle in RT(k) is 5-slim, which is a direct proof that ringed trees are constantly
hyperbolic.

For Theorem 4.4, we inductively prove that every geodesic [u, v] in RT(k, f)
is within O(log f(n)) distance of the canonical geodesic 〈u, v〉, and conversely.
Together with the result that every canonical triangle is 3-slim, it follows that
every geodesic triangle is O(log f(n))-slim.

For Theorem 4.5, part (1), we show that with high probability, the long-range
edges connect only vertices within ring distance O(log n), and then we can apply
Theorem 4.4 to achieve the O(log log n) bound.

For Theorem 4.5, part (2), the key is to show that (a) with high probabil-
ity, some long-range link connects two vertices at ring distance Θ(nc) for some
constant c, and (b) if such a long-range edge (u, v) exists, then we consider the
geodesic triangle Δ(u, v, r), where r is a point with lowest layer number on the
canonical geodesic between u and v, and show that the midpoint of [r, u] is
Θ(log n) away from the union of [r, v] and [v, u].

For Theorem 4.5, part (3), we first show that with high probability, there is
some pair of vertices u, v with h(u, v) ≥ c log2 n for some constant c > 0, and
then we observe that in such a configuration, the ring distance dR (u, v) has high
probability of being Ω(nc/2), and the argument follows exactly the same analysis
in the previous part.

For Theorem 4.6, parts (2) and (3) follow a similar strategy as that of The-
orem 4.5. For part (1), we know that two prospective ring neighbors u and v

have constant probability of having a long-range connection. However, since we
do not have ring edges, the alternative path between u and v through the tree
may be Θ(log n) in length. We show that there are at least Ω(

√
n) such pairs, so
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that with high probability, at least one pair is connected, generating a bad δ of
Ω(log n).

4.3. Detailed Analysis on Ringed Trees

4.3.1. Properties of Ringed Trees. We begin with some properties of ringed trees that
will be used repeatedly in the following analysis on ringed-tree-related graphs
and which may be of independent interest.

We define the ring distance dR (u, v) of u and v on the same level to be their
distance on the ring. Ringed trees have the following fundamental property.

Lemma 4.7. Let u and v be two vertices on the same level, and let u′ and v′ be their
respective parents. Then dR (u′, v′) ≤ (dR (u, v) + 1)/2.

Proof. On the ring, there are dR (u, v) + 1 vertices on the segment between u and
v, which belong to at most (dR (u, v) + 1)/2 + 1 parents, which correspond to at
most (dR (u, v) + 1)/2 + 1 vertices on the ring segment between u′ and v′. This
concludes the proof.

For a geodesic [u, v] on the ringed tree RT(k), we call the sequence of levels
through which it passes from u to v its level sequence. Lemma 4.7 implies that
the level sequence of any geodesic must be reversed unimodal: it first decreases,
and then increases (but the increasing or decreasing segment may be omitted).
The following lemma further characterizes geodesics in ringed trees.

Lemma 4.8. Let u, v be two vertices, u on level �, and u′ the parent of u at level
� − 1. Suppose [u, v] intersects level � − 1, and let t be the intersection closest to
u. Then d(u, t) ≤ 2, and the segment [u, t] of [u, v] and {u, u′} are within distance
1 of each other.

Proof. Let t′ be the node just before t to u on [t, u]. Then

d(t, u) ≤ 1 + dR (t, u′) ≤ 1 +
dR (t′, u) + 1

2

by Lemma 4.7. Since t is the closest node on level � − 1 on the geodesic to
u, it follows that d(t, u) ≥ 1 + dR (t′, u). We get d(t′, u) ≤ 1 and d(t, u) ≤ 2 by
combining these two inequalities. The segment [u, t] of [u, v] and {u, u′} are
within distance 1 of each other because d(t, u′) ≤ 1.

For two vertices u and v, we define the canonical geodesic 〈u, v〉 in a recursive
fashion:
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1. For u, v on the same level and dR (u, v) ≤ 3, 〈u, v〉 is the path on the ring
from u to v.

2. For u, v on the same level but dR (u, v) > 3, let u′, v′ be the respective
parents of u, v. Then 〈u, v〉 = [u, u′] ∪ 〈u′, v′〉 ∪ [v′, v].

3. For u, v on different levels, supposing u on upper level, let v′ be the
parent of v. Then 〈u, v〉 = 〈u, v′〉 ∪ [v′, v].

This is a well-formed definition. At each level of recursion, either the difference
of levels of nodes decreases, or in the case of nodes on the same level, the ring
distance decreases by Lemma 4.7, until we reach the base case, where we have
dR (u, v) ≤ 3.

We prove now that canonical geodesics are really geodesics.

Lemma 4.9. For all u, v, 〈u, v〉 is a geodesic between u and v.

Proof. For u, v on the same level and dR (u, v) ≤ 3, we can check that 〈u, v〉 is a
geodesic between u and v.

For u, v on the same level but dR (u, v) > 3, let u′, v′ be the respective parents
of u, v. Let t, s be the closest node to u, v in an upper level on [u, v]. If t 
= u′,
then d(u, t) ≥ 2, because the only way to go up one level in one step is to go to
the parent. By Lemma 4.8, [u, t] and {u, u′} are within distance 1 of each other.
Therefore, d(u′, t) = 1, since d(u, t) ≥ 2, and {u, u′} ∪ [t, v] is also a geodesic from
u to v. This is also correct for t = u′. The same can be proved for s. By combining,
we have that {u, u′} ∪ [t, s] ∪ {v′, v} is also a geodesic between u and v for any
geodesics [t, s]. If we pick the canonical geodesic 〈t, s〉, this will always be the
canonical geodesic 〈u, v〉. Therefore, 〈u, v〉 is a geodesic.

For u, v on different levels, the induction is essentially the same as in the
previous case, but instead of reasoning on both sides of u and v, we only need
to reason on one side of u or v, depending on which side is at the lower level.

This concludes our induction.

4.3.2. Proof of Theorem 4.2: Quasi-Isometry from Infinite Ringed Tree to the Poincaré Disk. In this
subsection, we will exhibit and prove a quasi-isometry from the infinite ringed
tree RT(∞) to the Poincaré disk. We denote its distance by dRT. We denote by
(D, dP ) the Poincaré disk, where D is the open disk of radius 1 in the complex
plane.

Here is a brief summary of our approach. First, we propose a candidate quasi-
isometry, and then all possible cases of images of two points of the ringed tree
are divided into four categories, each of which is separately analyzed. We then
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proceed with an analysis of the metric of the ringed tree and show that the
candidate quasi-isometry is effective, and thus the ringed tree and the Poincaré
disk are quasi-isometric.

The following inequalities will be used:

ln(x) ≤ cosh−1(x) ≤ ln(2x) for x ≥ 1,

2
π

x ≤ sin(x) ≤ x for 0 ≤ x ≤ π

2
,

1 − x

2
≤ √

1 − x ≤ 1 − 3x

5
for 0 ≤ x ≤ 1

2
.

To state the promised quasi-isometry, we give coordinates to the nodes in
RT(∞). We know that we can number the nodes with binary strings, each of
which can be regarded as a number. For a node on the kth level and numbered
by m, its coordinates are (k,m), with 0 ≤ m ≤ 2k − 1. The root is level 0.

Definition 4.10. Let the following mapping be the candidate for the quasi-isometry:

f : RT(∞) → D, (k,m) 	→
√

1 − 2−k e2iπm/2k

.

For 0 ≤ k ≤ �, m < 2�−1 , we define D(k, �,m) = dP (f(k, 0), f(�,m)). This is a
distance in the Poincaré disk. Following is its full expression in k and m:

D (k, �,m) = cosh−1

(
1 + 2

‖√1 − 2−k −√
1 − 2−�e2iπm/2� ‖2

2−k−�

)

= cosh−1

(
1 + 2

(√
2� (2k − 1) −

√
2k (2� − 1)

)2

+ 8
√

2� (2� − 1) 2k (2k − 1) sin2
(
π

m

2�

))
.

We also define

D′(k, �,m) = dRT(f(k, 0), f(�,m)),

with 0 ≤ k ≤ �, m < 2�−1 . This is a distance in the ringed tree.

We will now try to bound D(k, �,m) with the following lemma.

Lemma 4.11. We have the following bounds on D(k, �,m).

(1) For k = 0,

ln(2)
2

� +
ln(2)

2
≤ D(0, �,m) ≤ ln(2)

2
� + ln(6).
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(2) For 0 < k = �, m > 0,

ln(2)(4 + 2�log2 m�) ≤ D(k, k,m) ≤ ln(2)(4 + 2�log2 m�) + ln
(

5
4π2

)
for k ≥ 1.

(3) For m = 0, 1 ≤ k < �,

ln(2)(� − k) − ln(50) ≤ D(k, �, 0) ≤ ln(2)(� − k).

(4) For 0 < k < � and 0 < m < 2�−k ,

ln(2)(� − k) − ln(100) ≤ D(k, �,m) ≤ ln(2)(� − k) + ln(66π2).

(5) For 0 < k < � and 2�−k ≤ m < 2�−1 ,

ln(2)(k − � + 2�log2 m� + 4)
≤ D(k, �,m) ≤ ln(2)(k − � + 2�log2 m� + 6) + ln(π2 + 1).

Proof. 1. Case k = 0:

D(0, �,m) = cosh−1
(
1 + 2

√
2� − 1

)
.

If � = 0, then D(0, 0,m) = 0. For � ≥ 1, we have

D(0, �,m) ≥ cosh−1
(
2
√

2�−1
)
≥ ln(2)

2
� +

ln(2)
2

and

D(0, �,m) ≤ cosh−1
(
3
√

2�
)
≤ ln(2)

2
� + ln(6).

2. Case 0 < k = �, m > 0:

D (k, k,m) = cosh−1
(
1 + 2k+3 (2k − 1

)
sin2

(m

2k
π
))

.

Let a = �log2 m�. We have

D (k, k,m) ≥ cosh−1 (22k+2 sin2 (2a−kπ
)) ≥ cosh−1

(
22k+2 (2a+1−k

)2
)

≥ ln (2) (4 + 2a)

and

D (k, k,m) ≤ cosh−1
(

5
4
22k+2 sin2 (2a+1−kπ

))

≤ cosh−1
(

5
4
22k+2 (2a+1−kπ

)2
)

≤ ln (2) (4 + 2a) + ln
(

5
4π2

)
.
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3. Case 0 < k < �, m = 0:

D (k, �, 0) = cosh−1

(
1 + 2

(√
2� (2k − 1) −

√
2k (2� − 1)

)2
)

= cosh−1
(

1 + 2k+�+1
(√

1 − 2−k −
√

1 − 2−�
)2
)

.

Since 1 ≤ k < �, it follows that
√

1 − 2−� −√
1 − 2−k > 0, and we have√

1 − 2−� −
√

1 − 2−k ≥ 1 − 2−�−1 − 1 +
3
5
2−k ≥ 1

5
2−k−1

and √
1 − 2−� −

√
1 − 2−k ≤ 1 − 3

5
2−� − 1 + 2−k−1 ≤ 2−k−1 .

Therefore, we have

ln(2)(� − k) − ln(50) ≤ D(k, �, 0) ≤ ln(2)(� − k).

4. Case 0 < k < �, 0 < m < 2�−1 . We are now dealing with the general case of
m > 0 and 0 < k < �:

D (k, �,m) = cosh−1
(

cosh (D (k, �, 0)) + 8
√

2� (2� − 1) 2k (2k − 1) sin2
(
π

m

2�

))
.

We note that a = �log2 m�, and we have√
2� (2� − 1) 2k (2k − 1) sin2

(
π

m

2�

)
≥ 2�+k−122a−2�+2 = 2k−�+2a+1

and √
2� (2� − 1) 2k (2k − 1) sin2

(
π

m

2�

)
≤ 2�+k22a+2−2�π2 ≤ 2k−�+2a+2π2 .

The previous bound on D (k, �, 0) transforms into the following by applying cosh:

2�−k

100
≤ cosh (D (k, �, 0)) ≤ 2�−k .

A suitable substitution of cosh (D (k, �, 0)) gives

cosh−1
(

2�−k

100
+ 2k−�+2a+4

)
≤ D (k, �,m) ≤ cosh−1 (2�−k + 2k−�+2a+5π2) .

For 0 ≤ a ≤ � − k, therefore 0 < m < 2�−k ,

D (k, �,m) ≥ cosh−1
(

2�−k

100
+ 2k−�+2a+4

)
≥ ln

(
2�−k

100

)
= ln (2) (�−k)−ln(100),
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and

D (k, �,m) ≤ cosh−1 (2�−k + 2k−�+2a+5π2)
≤ ln

(
2�−k33π2)+ ln (2) = ln (2) (� − k + 1) + ln

(
33π2) .

For � − k + 1 ≤ a < m − 1, therefore 2�−k ≤ m < 2�−1 ,

D (k, �,m) ≥ cosh−1
(

2�−k

100
+ 2k−�+2a+4

)
≥ ln

(
2k−�+2a+4)

= ln (2) (k − � + 2a + 4) ,

and

D (k, �,m) ≤ cosh−1 (2�−k + 2k−�+2a+5π2)
≤ ln

((
π2 + 1

)
2k−�+2a+5)+ ln (2)

= ln (2) (k − � + 2a + 6) + ln
(
π2 + 1

)
.

The proof is complete.

We will now try to relate D(k, �,m) and D′(k, �,m) in the following lemma.

Lemma 4.12. For 0 ≤ k ≤ �, 0 ≤ m < 2�−1 , we have

ln(2)
2

D′(k, �,m) − ln(200) ≤ D(k, �,m) ≤ ln(2)D′(k, �,m) + ln(66π2).

Proof. Consider the canonical geodesic. If k = � and m = 1, then it is an edge from
(k, 0) to (k, 1). In other cases, it goes up first from (�,m) to a certain ancestor,
then makes two or three moves on the ring, and then finishes by going straight
down to (k, 0).

In the first case, D′(k, k, 1) = 1. In the second case, since the ancestor of any
node (k,m) is (k − 1, �m

2 �), by the form of canonical geodesics, we should first
go up � − k steps to reach level k. If m ≤ 2�−k+1, it reaches (k, 0) by at most an
extra step. In this case,

� − k ≤ D′(k, �,m) ≤ � − k + 1.

If m > 2�−k+1, we go up �log2 m� − 1 steps from (�,m) to reach an ancestor
numbered 2 or 3, then go two or three steps on the ring to the node numbered
0 on the same level, and finish by going down to (k, 0). Thus we have

2�log2 m� + k − � ≤ D′(k, �,m)2�log2 m� + k − � + 1

in this case.
We conclude by comparing to bounds in Lemma 4.11.
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We want to bound the distance between any two points in RT(∞) with the
following lemma.

Lemma 4.13. For u1 , v1 , u2 , v2 ∈ RT(∞) with u1 , v1 , u2 , v2 on the same level and
dR (u1 , v1) = dR (u2 , v2), we have |d(u1 , v1) − d(u2 , v2)| ≤ 3.

Proof. Let A = dR (u1 , v1). The statement of the lemma clearly holds when A ≤ 3
by the structure of canonical geodesics.

For A > 3, when we consider the canonical geodesics, we take successive an-
cestors of u1 and v1 until their distance is 2 or 3. This takes at least �log2 A� − 1
generations, but at most �log2(A − 1)�. These bounds differ by at most 1. Plat-
forms differ by at most 1, and therefore |d(u1 , v1) − d(u2 , v2)| ≤ 3.

Proof of Theorem 4.2. By symmetry, Lemma 4.13, and Lemma 4.12, for all u, v ∈
RT(∞), we have

ln(2)
2

dRT(u, v) − ln(200) ≤ dP (f(u), f(v)) ≤ ln(2)dRT(u, v) + ln(66π2).

There is only one thing left in order to prove quasi-isometry. We will now
prove that for some constant ε, B(f(RT(∞)), ε) covers the Poincaré disk. Im-
ages of each level are all on concentric circles, and the difference in radii between
successive levels can be bounded by ln(6). The distance between images of neigh-
boring nodes on the same level can be bounded by ln(16). For every point in the
Poincaré disk, its distance to the nearest image of nodes is bounded by ln(96),
by first moving straight away from 0 until reaching a concentric circle of images
and then taking the shortest path to reach the image of a certain node.

This proves f to be a
(

2
ln(2) , ln(66π2)

)
-quasi-isometry from RT(∞) to the

Poincaré disk. Thus RT(∞) and the Poincaré disk are quasi-isometric. The con-
stants we found here are not tight.

4.3.3. A Direct Proof of Corollary 4.3. We begin with a lemma about the distance
between a general geodesic and the corresponding canonical geodesic.

Lemma 4.14. For a geodesic [u, v], we have that [u, v] and 〈u, v〉 are within distance
1 of each other.

Proof. We perform an induction on the structure of 〈u, v〉.
For u, v on the same level and dR (u, v) ≤ 3, we can check that [u, v] and 〈u, v〉

are within distance 1 of each other.
For u, v on the same level but dR (u, v) > 3, let u′, v′ be the respective parents

of u, v. We have 〈u, v〉 = 〈u, u′〉 ∪ 〈u′, v′〉 ∪ 〈v′, v〉 by construction. By Lemma
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4.8, the parts of [u, v] that are on the same level with u, v already satisfy the
condition. We have only to deal with the part on levels with lower numbering.

Let t, s be the closest nodes to u, v that are at an upper level on [u, v]. If
t 
= u′, then d(u, t) ≥ 2, because the only way to go up one level in one step is to
go to the parent. By Lemma 4.8, [u, t] and 〈u, u′〉 are within distance 1 of each
other. Therefore, d(u′, t) = 1, and since d(u, t) ≥ 2, 〈u, u′〉 ∪ 〈u′, t〉 ∪ [t, v] is also
a geodesic from u to v. This is also correct for t = u′. The same can be proved for
s. By combining the above, we have that 〈u, u′〉 ∪ 〈u′, t〉 ∪ [t, s] ∪ 〈s, v′〉 ∪ 〈v′, v〉
is also a geodesic between u and v. Thus the section 〈u′, t〉 ∪ [t, s] ∪ 〈s, v′〉 is also
a geodesic from u′ to v′. By the induction hypothesis, it is within distance 1 of
〈u′, v′〉. However, this geodesic contains the part of [u, v] on levels with lower
numbering than that of u, v, which is precisely [t, s]. We conclude that [u, v] and
〈u, v〉 are within distance 1 of each other.

For u, v on different levels, the induction is essentially the same as in the
previous case, but we only need to reason on one side of u or v, depending on
which one is at the lower level.

This concludes our induction.

Lemma 4.15. Let u and v be two vertices at the same level � such that 〈u, v〉 stays
at level �. Then for any vertex w, 〈u,w〉 and 〈v, w〉 are within distance 3 of each
other.

Proof. Let �0 and �′0 be the highest levels reached by 〈u,w〉 and 〈v, w〉, respectively.
Without loss of generality, we assume that �0 ≥ �′0 . Thus � ≥ �0 . We prove the
lemma by an induction on �.

Consider the base case � = �0 . Let w′ be the ancestor of w at level �0 . Thus we
know that both 〈w′, u〉 and 〈u, v〉 stay at level �0 . By definition, dR (w′, u) ≤ 3
and dR (u, v) ≤ 3. We can enumerate all the possible cases of arrangements of
u, v, w′ to check that 〈w′, v〉 is at most one level higher than �0 (i.e., �′0 ≥ �0 − 1),
and 〈w′, v〉 and 〈w′, u〉 are within distance 3 of each other. Since 〈u,w〉 and 〈v, w〉
share the portion 〈w,w′〉, the lemma holds for the case � = �0 .

For the induction step, consider � > �0 . Let u′ and v′ be the respective parents
of u and v. By Lemma 4.7 and dR (u, v) ≤ 3, we know that dR (u′, v′) ≤ 2. Then
〈u′, v′〉 must stay at level � − 1. By the induction hypothesis, 〈u′, w〉 and 〈v′, w〉
are within distance 3 of each other. Since 〈u,w〉 = 〈u, u′〉 ∪ 〈u′, w〉, 〈v, w〉 =
〈v, v′〉 ∪ 〈v′, w〉, and dR (u, v) ≤ 3, we know that the lemma holds in this case.

We define a canonical triangle Δ̂(u, v, w) to be a geodesic triangle in which all
sides are canonical geodesics.

Lemma 4.16. Every canonical triangle Δ̂(u, v, w) in RT(k) is 3-slim.
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Proof. Without loss of generality, let u be the vertex at the lowest level, which is
�. We prove the lemma by induction on �. The base case � = 0 is trivial.

Consider the induction step with � > 0. If neither v nor w is at level �, then
both 〈u, v〉 and 〈u,w〉 go through u’s parent u′. By the induction hypothesis,
we know that Δ̂(u′, v, w) is 3-slim. Adding u in this case does not change the
distances among the sides, and thus Δ̂(u, v, w) is also 3-slim. Suppose now that
v or w or both are at level �. In the first case, suppose that at least one pair,
say u and v, is such that 〈u, v〉 stays at level �. By Lemma 4.15, we know that
〈u,w〉 and 〈v, w〉 are within distance 3 of each other. Since 〈u, v〉 has length at
most 3, we know that Δ̂(u, v, w) is 3-slim.

In the second case, suppose that all pairs at level � have their canonical
geodesics in level � − 1. For each vertex at level �, we take its parent, together
with perhaps another vertex already within level � − 1, and we can apply the
induction hypothesis and show that their canonical triangle is 3-slim.

Since for every vertex at level �, its canonical geodesics to the other two vertices
all go through its parent, the vertices at level � do not change the distance
between any pair of sides of the canonical triangle. Therefore, Δ̂(u, v, w) is 3-
slim.

With Lemmas 4.14 and 4.16, we can provide a direct proof of Corollary 4.3.

Proof of Corollary 4.3. We use the Rips condition here. For all u, v, w, By Lemma
4.14, we have [u, v] ⊆ B(〈u, v〉, 1). By Lemma 4.16, we have 〈u, v〉 ⊆ B(〈u,w〉 ∪
〈v, w〉, 3). By Lemma 4.14 again, we have 〈u,w〉 ∪ 〈v, w〉 ⊆ B([u,w] ∪ [v, w], 1).
Therefore, we conclude that [u, v] ⊆ B([u,w] ∪ [v, w], 5), and thus δRips(RT(k)) ≤
5. Since δ(RT(k)) ≤ 8δRips(RT(k)), we have δ(RT(k)) ≤ 40.

4.3.4. Proof of Theorem 4.4. We now apply the Rips condition to analyze the hyper-
bolicity of ringed trees with limited long-range edges RT(k, f). First we show
that a geodesic in RT(k, f) cannot make too many hops at the same level of the
ringed tree. For two vertices in a graph G ∈ RT(k, f), let [u, v] denote any one
of the geodesics between u and v in G, while 〈u, v〉 still denotes the canonical
geodesic between u and v in the base ringed tree RT(k).

Lemma 4.17. For u, v on the same level in RT(k) with d(u, v) > 1, we have
2 log2 dR (u, v) ≤ d(u, v) ≤ 2 log2(dR (u, v) − 1) + 2.

Proof. We carry out an induction on dR (u, v). If 1 < dR (u, v) ≤ 3, we can check
that the assertion is correct. If dR (u, v) > 3, let u′, v′ be the respective parents
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of u, v. By the induction hypothesis,

2 log2 dR (u′, v′) ≤ d(u′, v′) ≤ 2 log2(dR (u′, v′) − 1) + 2.

By the triangle inequality,

d(u, v) ≤ d(u′, v′) + 2 ≤ 2 log2(dR (u′, v′) − 1) + 4.

But dR (u′, v′) − 1 ≤ (dR (u, v) − 1)/2 by Lemma 4.7. And we have

d(u, v) ≤ 2 log2(dR (u′, v′) − 1) + 4 ≤ 2 log2(dR (u, v) − 1) + 2.

On the other hand,

d(u, v) ≥ 2 + d(u′, v′) ≥ 2 log2(2dR (u′, v′)).

Since dR (u′, v′) ≥ dR (u, v)/2, we have d(u, v) ≥ 2 log2 dR (u, v). Combining these
two inequalities concludes the induction.

Corollary 4.18. For u, v on the same level in RT(k), we have

d(u, v) ≤ 2 log2 dR (u, v) + 2.

Proof. We check the case d(u, v) = 1 and see that the assertion is satisfied. For
d(u, v) > 1, the result follows directly from

d(u, v) ≤ 2 log2(dR (u, v) − 1) + 2 ≤ 2 log2 dR (u, v) + 2.

Lemma 4.19. For a graph in the class RT(k, f) and two vertices u and v at
the same level j, if [u, v] never goes into vertices at level i < j, then d(u, v) ≤
max(32, 4 log2 f(n)) − 1 and dR (u, v) ≤ f(n)max(32, 4 log2 f(n)) − 1.

Proof. First, we will prove dR (u, v)/f(n) ≤ d(u, v) ≤ 2 log2 dR (u, v) + 2. The first
inequality holds because the shortest distance from u to v without going into
vertices in level i < j in the base ringed tree RT(k) is dR (u, v), and each long-
range edge can jump at most f(n) hops on the ring at any level. The second
inequality follows directly from Corollary 4.18.

Let x = d(u, v). From the above two inequalities, we have x ≤ 2 log2 xf(n) +
2. Then f(n) ≥ 2(x−2)/2/x ≥ 2(x+1)/4 for x ≥ 32, and thus x = d(u, v) ≤
max(32, 4 log2 f(n)) − 1. It follows that dR (u, v) ≤ f(n)max(32, 4 log2 f(n)) − 1.
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Lemma 4.20. For a graph in the class RT(k, f(n)) and two vertices u and v, [u, v]
and 〈u, v〉 are within distance 2max(32, 4 log2 f(n)) of each other.

Proof. The case in which u and v are ancestor and descendant to each other on
the tree is trivial. Thus we consider the case that u and v are not ancestor and
descendant to each other. Let �

〈〉
0 and �

[ ]
0 be respectively the innermost levels that

geodesics 〈u, v〉 and [u, v] reach. If �
[ ]
0 < �

〈〉
0 , then [u, v] uses at least two more tree

edges than 〈u, v〉. This means that 〈u, v〉 uses at least two ring edges.
If 〈u, v〉 uses exactly two ring edges, all edges in [u, v] must be tree edges, which

is impossible for a geodesic, given that u and v are not ancestor and descendant
to each other. Thus, 〈u, v〉 uses exactly three ring edges. Then [u, v] uses exactly
one ring or long-range edge.

Let u′ and v′ be respective ancestors of u and v at level �
〈〉
0 . In this case,

the only possible situation is (a) �
[ ]
0 = �

〈〉
0 − 1, and (b) the parents of u′ and

v′ are connected either by a ring edge or a long-range edge, which is used by
[u, v]. Hence, [u, v] and 〈u, v〉 share the tree edges from u to u′ and v′ to v, and
〈u, v〉 goes through ring edges from u′ to v′, while [u, v] goes through the edge
connecting the parents of u′ and v′. We thus have that [u, v] and 〈u, v〉 are within
distance 1 of each other. Therefore, from now on, we consider �

[ ]
0 ≥ �

〈〉
0 .

Let �u and �v be the levels of u and v respectively. Without loss of generality,
We can suppose that �u ≥ �v ≥ �

[ ]
0 .

For any level � reachable by both [u, v] and 〈u, v〉, i.e., �
[ ]
0 ≤ � ≤ �u , let x�

be the first level-� vertex on the geodesic [u, v] starting from u, and let y� be
the first level-� vertex on the geodesic 〈u, v〉 starting from u. We claim that
dR (x�, y�) ≤ f(n)max(32, 4 log2 f(n)).

For level �u , this is trivial. Suppose that our claim is correct for some level
� > �

[ ]
0 . We shall inductively prove the claim for level � − 1.

By the induction hypothesis, we know that

dR (x�, y�) ≤ f(n)max(32, 4 log2 f(n)).

Let x′
� be the level-� vertex just before x�−1 on [u, v] starting from u. By Lemma

4.19 and the fact that the portion [x�, x
′
� ] never goes to level i < �, we have

dR (x�, x
′
�) ≤ f(n)max(32, 4 log2 f(n)) − 1. Therefore,

dR (x′
� , y�) ≤ dR (x�, y�) + dR (x�, x

′
�) ≤ 2f(n)max(32, 4 log2 f(n)) − 1.

Since x�−1 and y�−1 are the parents of x′
� and y� respectively, by Lemma 4.7 we

have dR (x�−1 , y�−1) ≤ f(n)max(32, 4 log2 f(n)). Our claim holds for level � − 1.
By induction, our claim stands.
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We thus have

d(x�, y�) ≤ 2 log2(dR (x�, y�)) + 2 ≤ max(32, 4 log2 f(n))

for all �
[ ]
0 ≤ � ≤ �u . For any vertex x between x� and x′

� on [u, v] (note that x

may be at a level �′ ≥ �), by Lemma 4.19 we have

d(x, y�) ≤ d(x, x�) + d(x�, y�) ≤ d(x′
� , x�) + d(x�, y�) ≤ 2max(32, 4 log2 f(n)).

Hence all such vertices x are within distance 2max(32, 4 log2 f(n)) of vertex y�

in 〈u, v〉, and conversely.
Similarly, we can define z� to be the first level-� vertex on the geodesic [v, u]

starting from v, and w� to be the first level-� vertex on the geodesic 〈v, u〉 starting
from v, for all �

[ ]
0 ≤ � ≤ �v . By a symmetric argument, we can show that the w�

are within distance 2max(32, 4 log2 f(n)) of all vertices in the segment of [u, v]
from z�−1 to z� for � > �

[ ]
0 , and d(z

�
[ ]
0
, w

�
[ ]
0
) ≤ max(32, 4 log2 f(n)).

The only portion left to argue is from x
�

[ ]
0

to z
�

[ ]
0

in the geodesic [u, v] and

from y
�

[ ]
0

to w
�

[ ]
0

in the geodesic 〈u, v〉. By Lemma 4.19 and the definition of �
[ ]
0 ,

we know that d(x
�

[ ]
0
, z

�
[ ]
0
) ≤ max(32, 4 log2 f(n)). Therefore, all vertices in the

segment from x
�

[ ]
0

to z
�

[ ]
0

in the geodesic [u, v] are within 2max(32, 4 log2 f(n))
of both y

�
[ ]
0

and w
�

[ ]
0
. Now, for any vertex x in the segment from y

�
[ ]
0

to w
�

[ ]
0

in
the geodesic 〈u, v〉, we need to bound the distance from x to [u, v]. Since

dR (y
�

[ ]
0
, w

�
[ ]
0
) ≤ dR (y

�
[ ]
0
, x

�
[ ]
0
) + dR (x

�
[ ]
0
, z

�
[ ]
0
) + dR (z

�
[ ]
0
, w

�
[ ]
0
)

≤ 3f(n)max(32, 4 log2 f(n)),

we have

d(y
�

[ ]
0
, w

�
[ ]
0
) ≤ 2 log2 dR (y

�
[ ]
0
, w

�
[ ]
0
) + 2 ≤ max(32, 4 log2 f(n)).

Thus, for any vertex x in the segment from y
�

[ ]
0

to w
�

[ ]
0

in the geodesic 〈u, v〉,
x can reach either x

�
[ ]
0

or z
�

[ ]
0

in at most 2max(32, 4 log2 f(n)) hops. Therefore,
x is within distance 2max(32, 4 log2 f(n)) of [u, v].

Proof of Theorem 4.4. We use the Rips condition here. For any choice of u, v, w, by
Lemma 4.20, we have [u, v] ⊆ B(〈u, v〉, 2max(32, 4 log2 f(n))). By Lemma 4.16,
〈u, v〉 ⊆ B(〈u,w〉 ∪ 〈v, w〉, 3). Again by Lemma 4.20,

〈u,w〉 ∪ 〈v, w〉 ⊆ B([u,w] ∪ [v, w], 2max(32, 4 log2 f(n))).

Combining these, we have

[u, v] ⊆ B([u,w] ∪ [v, w], 4max(32, 4 log2 f(n)) + 3).
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Therefore, since δ and δRips differ by a constant factor, we have δ(RT(k, f)) ≤
c log f(n) for some constant c.

4.3.5. Proof of Theorem 4.5. We first analyze the δ-hyperbolicity of
RRT(k, e−αdR (u,v )).

Proof of Theorem 4.5, part 1. We have eα ≤ ρ =
∑

v∈V \{u} e−dR (u,v )α ≤ 2
∑+∞

i=1 eiα .
Therefore, ρ = Θ(1). A vertex u on the leaves of RT(k) has a long-range edge
with ring distance greater than k with probability Θ(e−kα )/ρ. Let k = 2

α log n.
We know that a vertex has a long-range edge of ring distance greater than 2

α log n

with probability Θ(1/n2) = o(1/n).
Therefore, with probability 1 − o(1), long-range edges never exceed the ring

distance 2
α log n. From Theorem 4.4, it follows that

δ(RRT(k, e−αdR (u,v ))) = O(log log n)

for every α > 0.

For the case δ(RRT(k, dR (u, v)−α )), we look first at a lemma about the effect
of long-range edges with ring distance Ω(nc) on the δ-hyperbolicity of ringed
trees.

Lemma 4.21. If we add an edge between u and v on the outermost ring of a k-level
ringed tree with dR (u, v) ≥ c′nc , for some constants c and c′, then the resulting
graph G (possibly with other edges on the outermost ring) has δ(G) = Ω(log n).

Proof. Let w be a node of lowest layer number on 〈u, v〉. By Lemma 4.17 and the
structure of a canonical geodesic,

d(w, u) ≥ 2 log2 c′nc − 3
2

≥ c log2 n + log2 c′ − 3
2
.

We consider the midpoint x of [u,w]. For any point y in [v, w], by considering
the canonical geodesic 〈x, y〉, we know that

d(x, y) ≥ c log2 n + log2 c′ − 3/2
2

− 3.

Therefore, Δ(u, v, w) is at best(
c log2 n + log2 c′ − 3/2

2
− 3

)
-slim,

and thus δ(G) = δRips(G) = Ω(log n).

A probabilistic version comes naturally as the following corollary.
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Corollary 4.22. For a random graph G formed by linking edges on leaves of a ringed
tree, if for some constant c with 0 < c < 1, with high probability there exists
an edge linking some u and v with dR (u, v) = Θ(nc), then with high probability
δ(G) = Θ(log n).

Proof. The diameter of a ringed tree gives an O(log n) upper bound. Lemma 4.21
gives an Ω(log n) lower bound.

We can now estimate the δ-hyperbolicity of RRT(k, dR (u, v)−α ).

Proof of Theorem 4.5, part 2. Note that in a ringed tree with n vertices, at least n/2
of them are leaves. For a constant c with 0 < c < 1 and a fixed vertex u, the
probability that the long-range edge (u, v) has dR (u, v) ≤ (n/4)c (we shall say
that it is “good”) is

p = 2ρ−1
(n/4)c∑
d=1

d−α , where ρ = Θ

(
n∑

d=1

d−α

)
.

For 0 < α < 1, we have p = O(n(1−α)(c−1)) = o(1). For α = 1, we have p =
c + o(1). In these two cases, all edges are good with probability at most

(
c + o(1)

)(n/2) = o(1).

For α > 1, we have ρ = O(1). We take q = 1 − p. We have q = O(nc(1−α)). By
choosing

c = min
(

1,
1

2(α − 1)

)
,

we have q = O(n−1/2). All edges are good with probability

(1 − q)n/2 = O
(
e−

√
n
)

= o(1).

In all three cases, by Corollary 4.22, with probability 1 − o(1), we have
δ(RRT(k, dR (u, v)−α )) = Θ(log n).

Finally, we estimate the δ-hyperbolicity of RRT(k, 2−αh(u,v )).

Proof of Theorem 4.5, part 3. We note that the number of leaves is nL = (n + 1)/2. Fix
a leaf u. There are 2h−1 leaves v such that h(u, v) = h. Therefore,

ρ =
log2 nL∑

h=1

2h−1−αh .
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For a constant c with 0 < c < 1, let

p(c) = ρ−1
c log2 nL∑

h=1

2h−1−αh

be the probability that u never links to any v with h(u, v) ≥ c log2 n. We have

ρ =

⎧⎪⎨
⎪⎩

2−αn1−α
L /(1 − 21−α ) for α 
= 1,

1
2

log2 nL for α = 1.

For α 
= 1, we have p(c) = n
−(1−α)(1−c)
L . For α = 1, we have p(c) = c.

For the case α ≤ 1, we have p(1/2) = O(1). Therefore, with probability (1 −
p(1/2))nL = o(1), there exist some u, v linked together with h(u, v) ≥ 1

2 log2 n.
For α > 1, we take the constant c0 = min(1, 1

2(α−1) ), and we have p(c0) = n
−1/2
L .

Therefore, with probability (1 − p(c0))nL = O(e−
√

nL ) = o(1), there exist some u,
v linked together with h(u, v) ≥ c0 log2 nL . In any case, with 1 − o(1) probability,
there exist u, v linked together by a long-range edge with h(u, v) ≥ c log2 nL for
some constant c. We notice that this occurs uniformly through all edges.

Given u, v with h(u, v) = h, we have dR (u, v) < 2h/2 with probability at
most 2h21−2h = 21−h by simply counting pairs within ring distance 2h/2 . With
h(u, v) ≥ c log2 nL, c > 0, we know that with probability 1 − 2n−c

L = 1 − o(1), we
have dR (u, v) ≥ 2h/2 = n

c/2
L . Combining with the previous analysis, we prove

that with 1 − o(1) probability, there exist u, v linked together by a long-range
edge with dR (u, v) ≥ n

c/2
L for some constant c > 0. By Corollary 4.22 and by

nL > n/2, with probability 1 − o(1) we have δ(RRT(k, 2−αh(u,v ))) = Θ(log n).

4.3.6. Proof of Theorem 4.6. We can order a binary tree to give it a ring distance.
We will suppose hereinafter that such a distance is defined. We begin with a
counterpart of Lemma 4.21 in a binary tree.

Lemma 4.23. If there is an edge between two leaves u, v of a binary tree of size n

with distance to lowest common ancestor h(u, v) = c1 log2 n + c2 for some con-
stants c1 > 0, c2 > 0, then the resulting graph G (possibly with other edges on
the outermost ring) has δ(G) = Ω(log n).

Proof. Consider w, the lowest common ancestor of u, v, and x, the midpoint of
[u,w]. We have d(x,w) = d(w, u)/2 = h(u, v)/2. For every y in [w, v], d(x, y) ≥
h(u, v)/2, since the only path in the tree from y to x always passes by w, and we
need to climb h(u, v)/2 levels if we use links on leaves. Therefore, Δ(u, v, w) is
at best h(u, v)/2 = 1

2 (c1 log2 n + c2), and we conclude that δ(G) = Ω(log n).
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Corollary 4.24. For a random graph G formed by linking edges on leaves of a binary
tree, if for some constant c with 0 < c < 1, with high probability there exists an
edge linking some u and v with h(u, v) = Θ(log n), then with high probability,
δ(G) = Θ(log n).

Proof. The diameter of a binary tree gives an O(log n) upper bound. Lemma 4.23
gives an Ω(log n) lower bound.

Proof of Theorem 4.6. For RBT(k, e−αdR (u,v )), the height of the whole tree is h =
�log2 n�. There are Θ(

√
n) subtrees of height h/2, with the root at level h/2. For

every neighboring such subtree, the rightmost leaf u on the left subtree and the
leftmost leaf v on the right subtree satisfy dR (u, v) = 1, h(u, v) ≥ h/2. For each
leaf, we have ρ = O(1). Therefore, for u, v with dR (u, v) = 1, there is an extra
edge between u and v with constant probability e−αρ−1 > 0. Since there are√

n such pairs, with probability 1 − (1 − e−αρ−1)
√

n = 1 − o(1), there is a pair of
leaves u, v linked by an extra edge with dR (u, v) = 1, h(u, v) ≥ h/2 = Θ(log n).
By Corollary 4.24, with probability 1 − o(1), δ(RBT(k, e−αdR (u,v ))) = Θ(log n).

For RBT(k, dR (u, v)−α ) and RBT(k, 2−αh(u,v )), using the same analysis as
that in the proof of Theorem 4.5, we know that for some constant c > 0, with
1 − o(1) probability, there is an extra edge between u and v with dR (u, v) =
Ω(nc). We have h(u, v) = Ω(log n), because a subtree of height h spans a
ring distance at most 2h . By Corollary 4.24, we have δ(RBT(k, dR (u, v)−α )) =
δ(RBT(k, 2−αh(u,v ))) = Θ(log n).

4.4. Extensions of the Random Ringed Tree Model

We will now discuss some extensions of the random ringed tree (RRT) model and
show that our results still hold for these extensions, thus extending the model’s
expressivity.

We begin with some observations on the proof of Theorem 4.5. In this proof,
the upper bound of δ-hyperbolicity is given by Theorem 4.4, and the lower bound
is given by Corollary 4.22. In the statement of Theorem 4.4, by the definition
of RT(k, f), only a uniform bound of ring distance dR (u, v) for each long-range
edge (u, v) is considered. In the statement of Corollary 4.22, the only quantity
concerning a long-range edge (u, v) is also the ringed distance between u and v,
and to apply this corollary, we have only to show that a long-range edge (u, v)
with dR (u, v) = Θ(nc) for some constant c exists with high probability. Therefore,
the proof of Theorem 4.5 relies only on the ring distances of long-range edges.

To extend the RRT model while keeping similar properties on δ-hyperbolicity,
we have only to show that Theorem 4.4 and Corollary 4.22 are still applicable
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in these extensions. We will here discuss two extensions on choosing long-range
edges.

4.4.1. A Constant Number of Long-Range Edges for Each Node. In the original RRT model,
each node has only one long-range edge connecting to other nodes. We can extend
the model to allow each node to have a constant number of long-range edges
connecting to a constant number of other nodes. In this extension, Theorem 4.5
still holds, since Theorem 4.4 is not affected by the number of long-range edges,
and Corollary 4.22 is still applicable, since the required probability only increases
with extra long-range edges.

4.4.2. Independent Long-Range Edges. In the original RRT model, we choose exactly
one long-range edge for each node. A variant of the model is that each node
u can choose edge (u, v) independently from other edges (u, v′), with the same
probability as in the original model such that in expectation, u connects with
one long-range edge. In this variant, Theorem 4.5 still holds. The reason is that
in expectation, at least a constant fraction of nodes issue only one edge, and the
computation for applying Corollary 4.22 is similar. It is clear that the application
of Theorem 4.4 remains valid.

In the two variants discussed above, we can see that Theorem 4.5 still applies,
and we have exactly the same property of δ-hyperbolicity of these variants. We
can also combine these two variants, and it is clear that our results are still valid.

5. Discussion and Open Problems

Perhaps the most obvious extension of our results is to close the gap in the bounds
on the hyperbolicity in the low-dimensional small-world model when γ is at the
“sweet spot” as well as to extend the results for large γ to dimensions d ≥ 2.
Also of interest is characterizing in more detail the hyperbolicity properties of
other random graph models, in particular those that have substantial heavy-
tailed properties. Finally, the exact computation of δ by definition takes O(n4)
time, which is not scalable to large graphs, and thus the design of more efficient
exact or approximation algorithms would be of interest.

From a broader perspective, however, our results suggest that δ is a measure
of treelikeness that can be quite sensitive to noise in graphs, and in particular
to randomness as it is implemented in common network generative models. For
example, ringed trees have constant hyperbolicity, but once some random links
are added among leaves, our results show that very likely, their hyperbolic δ

reaches the level of the graph diameter and they become not hyperbolic at all.
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Moreover, our results for the δ hyperbolicity of rewired trees (Theorem 4.6)
versus rewired low-δ treelike metrics (Theorem 4.5 (1)) suggest that while quite
appropriate for continuous negatively curved manifolds, the usual definition of δ

may be somewhat less useful for discrete graphs. Thus, it would be of interest to
address questions such as, does there exist a measure other than Gromov’s δ that
is more appropriate for graph-based data or more robust to noise/randomness
as used in popular network generation models? Is it possible to incorporate
in a meaningful way nontrivial randomness in other low-δ-hyperbolicity graph
families? Can we construct nontrivial random graph families that contain as
much randomness as possible while having low δ-hyperbolicity compared to graph
diameter?

Acknowledgments. We are grateful to Yajun Wang and Xiaohui Bei for their helpful dis-
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[Boguñá et al. 09] M. Boguñá, D. Krioukov, and K. C. Claffy. “Navigability of Complex
Networks.” Nature Physics 5 (2009), 74–80.

[Bowditch 91] Brian H. Bowditch. “Notes on Gromov’s Hyperbolicity Criterion for
Path-Metric Spaces.” In Group Theory from a Geometrical Viewpoint (Trieste,
1990), pp. 64–167, 1991.

[Bridson and Haefliger 99] Martin R. Bridson and André Haefliger. Metric Spaces of
Non-positive Curvature. Springer, 1999.

[Chepoi and Dragan 00] V. Chepoi and F. Dragan. “A Note on Distance Approximating
Trees in Graphs.” European Journal of Combinatorics 21 (2000), 761–766.

[Chepoi and Estellon 07] V. Chepoi and B. Estellon. “Packing and Covering δ-
Hyperbolic Spaces by Balls.” In Proceedings of the 10th International Workshop
on Approximation, pp. 59–73, 2007.



Chen et al.: On the Hyperbolicity of Small-World and Treelike Random Graphs 489

[Chepoi et al. 08] Victor Chepoi, Feodor. F. Dragan, Bertrand Estellon, Michel Habib,
and Yann Vaxès. “Diameters, Centers, and Approximating Trees of δ-Hyperbolic
Geodesic Spaces and Graphs.” In Proceedings of the 24th Annual Symposium on
Computational Geometry, pp. 59–68. ACM, 2008.

[Chepoi et al. 12] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, Y. Vaxès, and Y. Xi-
ang. “Additive Spanners and Distance and Routing Labeling Schemes for Hyperbolic
Graphs.” Algorithmica 62 (2012), 713–732.

[Gavoille and Ly 05] C. Gavoille and O. Ly. “Distance Labeling in Hyperbolic Graphs.”
In Proceedings of the 16th Annual International Symposium on Algorithms and Com-
putation, pp. 1071–1079, 2005.

[Ghys and de La Harpe 90] Étienne Ghys and Pierre de La Harpe. “Sur les groupes
hyperboliques d’après Mikhael Gromov.” Birkhäuser, 1990.
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