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Concentration and Stability
of Community-Detecting Functions
on Random Networks

Weituo Zhang and Chjan C. Lim

Abstract. ~ We propose a general form of community-detecting functions for finding
communities—an optimal partition of a random network—and examine the concen-
tration and stability of the function values using the bounded difference martingale
method. We derive LDP inequalities for both the general case and several specific
community-detecting functions: modularity, graph bipartitioning, and g-Potts commu-
nity structure. We also discuss the concentration and stability of community-detecting
functions on different types of random networks: sparse and nonsparse networks and
some examples such as ER and CL networks.

[. Introduction

One of the main problems in network study is finding communities, that is,
an optimal partition for a given network. A standard approach is to design a
community-detecting function of network partitions that achieves its extremum
when the partition is optimal, or conversely, the optimality of the partition is
defined by a reasonably designed community-detecting function.
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There are several important applications of this approach. One is to find the
community structures of social networks. A well-known community-detecting
function for this application is modularity [Newman 06]. Another application is
called circuit partitioning in designing a computer system [Kirkpatrick et al. 83],
in which circuits must be partitioned into groups so that the number of sig-
nals crossing the partition boundaries is minimized. The community-detecting
function used in this application is a variation of the function used in the graph-
bipartitioning problem [Wiethege and Sherrington 87]. In this paper, we propose
a general form of community-detecting functions for which the functions men-
tioned above and many others are considered as specific cases.

Previous studies have shown that optimizing a community-detecting function
is in general an NP-complete problem [Fu and Anderson 86]. Algorithms such
as simulated annealing have been developed and tested on specific networks
[Kirkpatrick et al. 83]. However, in theoretical studies, it is nearly impossible to
obtain an exact solution for a single network. What we usually have is the aver-
age value of the community-detecting function over a random network ensemble
[Wiethege and Sherrington 87, Wong and Sherrington 87]. This gap between the
computational and theoretical points of view makes it necessary to study the
concentration and stability of community-detecting functions.

Roughly speaking, the stability of a community-detecting function means that
a change in the function is small when the corresponding network structure un-
dergoes a small perturbation; and concentration means that the theoretically pre-
dicted average value of the community-detecting function becomes more precise
as the system size grows larger. In this paper, we derive LDP-type inequalities
to illustrate both aspects: the fluctuation of a community-detecting function in
a fixed network ensemble and its asymptotic behavior as the system size goes to
infinity. Here the inequalities of LDP (large deviation principle) type [Sanov 57|
refer to those controlling the probabilities of rare events by an exponentially
decaying function whose exponent is related to the rate function.

The concentration and stability of a community-detecting function, which will
be further discussed in Section 3, are important from the following point of view:
First, sometimes it is helpful to consider a given network as a sample randomly
selected from a designed network ensemble. The ensemble should be easy to
analyze. It should capture important features of the given network such as the
average degree or the degree distribution, but neglect detailed structural informa-
tion by randomization. In this scenario, concentration and stability estimate the
departure of the function value of the given network from the ensemble average.

Second, for real-world networks such as social networks and the Internet,
we have problems such as lack of information, uncertainty of the environment,
and changing of the network over time. These networks should essentially be
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considered as network ensembles. Since this ensemble is usually hard to analyze,
simulation results of specific networks are, in turn, taken to estimate the en-
semble average. In this scenario, the concentration and stability come from the
problem itself. For example, in circuit partitioning, if we have already found an
optimal circuit partition under a given signal flow configuration, then concen-
tration and stability lead us to conclude that this partition is still “good” if it is
not optimal under similar configurations.

Finally, the concentration and stability give a measure of how a specific net-
work deviates from an ensemble. For example, we calculate the modularities for a
given network G and the ER network ensemble. These two values by themselves
do not indicate whether the communities are well defined in G. However, the
LDP inequality from the concentration gives a bound on the probability that a
network randomly picked from the ER network ensemble has smaller modularity
than G by chance. If the probability is small enough, it is statistically significant
that G is not chosen from the ER ensemble considering the community structure.

Although not essential to the analysis in this paper, the general form of a
community-detecting function can be physically interpreted as a Hamiltonian of
a spin system. We study concentration and stability through a classical approach
invented by Spencer et al. [Shamir and Spencer 87]: consider an exploring process
(edge by edge or node by node) of the network, construct a Doob martingale,
and take advantage of martingale inequalities.

We apply our results to several special community-detecting functions: mod-
ularity, graph bipartitioning, and g-Potts community structure. We also discuss
the problems on different classes of networks such as Erdés-Rényi (ER) and
Chung—Lu (CL). Considering the asymptotic behavior of the number of edges
as the network size grows, we also classify the network models into sparse and
nonsparse. We study only “sparse” networks defined by a constant upper bound
of the degree, for which we have proved a very general concentration result for
all these problems. For nonsparse networks we derive our results only for specific
cases.

1. Background

The underlying martingale inequality (Azuma’s inequality) can be traced back
to Chebyshev’s inequality. Bernstein’s inequality [Bernstein 24, Bernstein 37] is
considered a modification of Chebyshev’s inequality and gives an exponentially
decreasing probability upper bound. The first version of the Hoeffding—Chernoff
bound, which gives a very general probability upper bound for sums of i.i.d. ran-
dom variables, was presented and proved in [Hoeffding 63]. In the same paper,
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Hoeffding also proposed a slightly different version from the case in which the
random variables are not necessarily identical but uniformly bounded, and this
version is usually called Hoeffding’s inequality. In [Azuma 67], the independent
variables in Hoeffding’s inequality are extended to martingale differences, result-
ing in Azuma’s inequality. That is a great improvement for us, because the inde-
pendence between the existence of edges is usually unavailable in network study.

Azuma’s inequality is applied in [Rhee and Talagrand 87] to NP-hard optimiza-
tion problems. The authors give stochastic models for the bin-packing problem
and traveling salesman problem as two examples, and they assume a sequence
of optimal solutions of a growing system to construct the martingale.

In [Shamir and Spencer 87], Azuma’s inequality is applied to the problem of
the chromatic number of a random graph. The study [McDiarmid 89] summarizes
this technique on random graphs as the method of bounded differences and dis-
cusses some extensions such as isoperimetric inequalities. Then several statistics
of random graphs are studied, such as average distance [Chung and Lu 02a], con-
nected component size [Chung and Lu 02b], and number of triangles [Kim and
Vu 04]. More generalized martingale inequalities [Godbole and Hitczenko 98, Kim
and Vu 04] and models of random graphs [Chung and Lu 02a, Chung and Lu 02b)
are considered in these studies.

Our study combines the above two types of applications of Azuma’s inequal-
ity, considering both the optimization problem and the random graph factors.
Compared with [Rhee and Talagrand 87], the stochastic model is replaced by a
random network, and instead of an optimal solution sequence of increasing sys-
tem sizes, we consider an arbitrary solution on a fixed but gradually uncovered
random graph and finally try to find the optimal ones. The works [Shamir and
Spencer 87, McDiarmid 89] are the most relevant to ours. We use almost the
same technique in derivation. Other works mentioned above all consider some
direct statistics of random networks without an optimization procedure, so they
are conceptually simpler than ours.

3. General Model

The random network model is represented by an ensemble Q(N) = {T'(N), P},
where T'(N) is the collection of all connected graphs with N nodes, and P is
a probability measure on I'(N). Furthermore, G € Q(N) is considered a ran-
dom network taking values in I'(N) with probability P(G). Its adjacency ma-
trix is given by A = [A;;]nxn, and the degree of each node is denoted by d;
(it =1,...,N). Additionally, we require that the probabilities for any two nodes
to be linked must be independent, i.e., {A4;; | ¢ < j} are N(N — 1)/2 independent
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random variables. A spin vector § = (s1,...,sn5) (s; = {—1,1}) assigns a spin to
each node and indicates a partition that takes the nodes with the same spin
direction (—1 or 1) in one group. The community-detecting function is given by

N

ha (5) = —% Y Fi(G)sisy, (3.1)

ij=1

where {F}; } are functions of the random network G and hence random variables.
Many community-detecting problems can be considered special cases of this
general model. For example, when Fj;(G) = A;;(G), equation (3.1) becomes the
community-detecting function for the graph-bipartitioning problem [Wiethege
and Sherrington 87]. Because the form of the community-detecting function
can be considered the Hamiltonian of a spin system, we also call hg(8) the
Hamiltonian in a later context. Let S be the spin configuration space including
all possible spin states satisfying given constraints. We take 55 € S as the
optimal configuration of hg, and

H(G) = minhe(5) = he ()

depends only on GG and therefore is a property of the network itself rather than
some specific configuration.

In this paper, we will discuss two properties of H(G) with respect to the given
network ensemble: stability and concentration, both in terms of the probability
of large deviation |H(G) — (H); | > t, where (H). is the ensemble average of
H(G), and t is a positive threshold. Stability refers to the property that the
probability of large deviation is small, i.e., controlled by some exponentially
decaying function of t. Concentration, as a stronger property than stability, refers
to the property that the probability of large deviation is not only small, but also
vanishing as the system size NV tends to infinity.

We start from the following theorem, which is relatively weak but applicable
to an arbitrary network ensemble.

Theorem 3.1. If {Fi;}, 4,5 =1,..., N, are such that for any two networks G,G' €
Q that differ only by one edge, |F;;j(G)— Fj;(G')| < ¢, where ¢ is a constant
independent of i, 7, then for every real number t,

PUH(G) — (H)a | > 0 < 2exp (1 ),

where (-), is the ensemble average and c? is a constant independent of t
and Q(N).

To prove theorem 3.1, we need Azuma’s inequality and a lemma.
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Theorem 3.2. [Azuma 67] Suppose Yi = 271(21 X; is a martingale. Given the bound-
edness of each increment |X;| < b;, the following inequality holds for every real
number t:

t?
P(|Yx — E[Yk]| > 1) < 2exp <_22:7K—1b72> :

Lemma 3.3. If the conditions in Theorem 3.1 hold, then |H(G) — H(G")| < ¢/N.

Proof. We first suppose that G and G’ differ only at the edge between the nodes
1o and jo:

1 , c
|hG(§j - hG’<§)| < N|Fiojo (G) - ono (G )H5050| < N

Without loss of generality, we assume that H(G) > H(G') and that H(G) is
achieved at a specific configuration sj, that is,

he(59) = H(G) > H(G') > hei(s5).
So |[H(G) — H(G")| < |ha(50) — har(53)] < ¢/N. O

Proof of Theorem 3.1. Suppose G € Q(N) is a random graph whose node pairs are la-
beled from 1 to N(N — 1)/2. Each node pair corresponds to one random variable
Ay = Lgnode pair & is linked} (K = 1,..., N(NV —1)/2). Therefore the random graph
G can be considered a random process {4y, ..., Aynv_1)/2}, and its filtration is
F. (k=0,...,N(N —-1)/2).

Define Hy = E[H(G)|Fy] (k=1,...,N(N —1)/2), and Hy = F[H(G)|Fy] =
(H),,. We observe that Hy (k=0,...,N(IN —1)/2) is a martingale by con-
struction. We construct an auxiliary process G' = {47, ... ,A’N( N-1) /2} for which
Ay =Aj when j #k+1and A, =1— A; when j =k + 1. Then G’ shares the
same filtration with G and represents the graph that differs from G only by the
link between the node pair k£ 4 1. The increment of H}, is given by

|Hy1 — Hi| = [Hps1 — E[Hp1[Fy]| = |E[H(G)|Fys1] — E[H(G)|Fya]|

< E[[H(G) — H(G)||Fi] < -

In the last inequality, |H(G) — H(G')| as a random variable depending only on
the realization of G is bounded by ¢/N according to Lemma 3.3, so its conditional
expectation is also controlled by this bound. We apply Azuma’s inequality to Hy,
and obtain

2 2
PUH(G) ~ (H)g 1> 0) < 2080 (=i ) < 2o (<1 ).




366 Internet Mathematics

The proof is complete. O

The inequality by itself indicates only some level of stability of H(G) over
the ensemble €. To interpret this inequality as a concentration result instead
of a single network ensemble, we need a random network model consisting of a
sequence of network ensembles with different system sizes V.

The above general model does not specify the way to generate the ensemble
sequence as N — 0o, especially the growing speed of the number of edges. To
keep the networks connected, the number of edges must grow at least linearly
with respect to the number of nodes. We take network models whose numbers of
edges grow linearly and superlinearly for sparse networks and nonsparse networks
separately. There is no general concentration result for nonsparse networks, so we
leave a discussion of this case to later sections for specific community-detecting
functions. As to the sparse networks, there are various ways to define them as
long as their numbers of edges grow linearly and we consider only one definition,
K-bound networks.

4.  K-Bound Networks

A network is called K-bound if the constant K is an upper bound on the network
degrees. A network ensemble or a random network model is called K-bound if
K is a uniform upper bound on the degrees over the network ensemble or the
ensemble sequence.

A subtle point here is that the K-bound constraint may violate the inde-
pendence of the links. However, the violation can be ignored, because in a
random network with independent links, the probability distribution of the
degree decays very fast (the probability that the degree exceeds K has order
O(e X)), and as K increases, the difference between the probability measures
of the network ensembles with and without the K-bound constraint goes to zero
very quickly. For K-bound networks, we have the following concentration result.

Theorem 4.1. If Q is a K-bound ensemble, {F;;}, i,j =1,..., N, are such that for
any two networks G,G' € Q that differ only by one edge, |F;;(G) — Fi;(G')| <,
where ¢ is a constant independent of i, j, then for every real number t,

2
PUH(G) — (H)g | > 1) < 2exp <8§t> (4.1)

Proof. Suppose G € (N) is a random graph with nodes labeled 1,2,..., N. Let
G, denote the subgraph containing nodes from 1 to k and also considered as a
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filtration. Define H, = E[H(G) | G], k=1,...,N, and Hy = E[H(G) | Gy| =
(H)q. Then Hy, (k=0,...,N) is a martingale by construction. Suppose that G”
is a network that differs from G only in the (k + 1)th node, i.e., all the different
elements between the adjacency matrices of G and G” correspond to the edges
linked to the (k + 1)th node. Then G} is the corresponding filtration for G. Note
that the degree is at most K, and therefore, G and G” can differ by at most 2K
edges:

|Hy11 — Hi| = [Hpy1 — E[Hy 11| Fy]| = max{|E[H(G)|G] — E[H(G")|G}][}

< 2K |BIH(G)|G] - BIH(@)|Gy]| < 21

Here G’ is as defined in the proof of Theorem 3.1. The difference H(G) —
H(G") can be decomposed into at most 2K terms all of which have the same
bound as H(G) — H(G'). Applying Azuma’s inequality, we have

P(H(G) ~ (H)q| > 1) < 2exp (‘W) < 2ex (_8jf\gc2>
|

Remark 4.2. According to this inequality, the fluctuation of H(G) about its mean
has order O(N~1/2).

When we are given a network Gy = {AOZ»]»}, one way to generate a network
ensemble is to suppose that the given network undergoes a certain perturba-
tion. Suppose the perturbation is denoted by dG(po,p1), where py,p; are two
probabilities. The network ensemble G = {4;;} generated by Gy and §G(pg,p1)
satisfies the following:

(a) If Ag;j =1, then A;; =0 with probability py and A;; =1 with probability
1-— Po-

(b) If Ay;; =0, then A;; = 1 with probability p; and A;; = 0 with probability
1-— P1-

To conserve the average degree of the original network Gy, we additionally
require
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where m is the total number of edges in Gy. Since m < NK/2, the requirement
implies
< K
PP=N-1-FK

If Gy satisfies the K-bounded degree condition, we have the following result.

Po-

Theorem 4.3. If Q is a K-bound ensemble generated by a given K-bound network G
and a small perturbation 6G, {F;;}, i,j=1,...,N, are such that for any two
networks G,G' € Q that differ only by one edge, |F;;(G) — F;;(G")| < ¢, where ¢
s a constant independent of i, j, then for every real number t,

P(H(G) = (H)g | > t) < 2exp <_4[02 (2K?p? Jiv;;po) + Kct/3] > (4.2)

To prove Theorem 4.3, we need a variant form of Azuma’s inequality:

Theorem 44. [Chung and Lu 06] Suppose Yx = 271(21 X; is a martingale. Then
given the boundedness of each increment | X;| < M, Var(X;) = v?, the following
inequality holds for every real number t:

t2

P(Yic — V]| > 1) < 2exp | ———
Q(Zizl v? 4 Mt/3)

Proof. The proof is almost the same as that for Theorem 4.1. We have only to
replace Theorem 3.2 in that proof by Theorem 4.4 and find the upper bound of
Var(X;).

Let the random variable L; denote the number of changes between Gy = {Ay;; }
and G = {4;;} (i < j) related to the node i. Since L; can be considered a sum
of 0-1 random variables, we have

Var(L;) = Kpo(1 —po) + (N =1 = K)pi (1 —p1)
< Kpy + (N —1-K)p1 <2Kpq
and
E[L;]] =Kpy+ (N —1— K)p; <2Kpy.
Since |X;| < L;c/N, we have

2

C2 02
Var(X;) < FE[L?} = W(EZ [L;] + Var(L;)) = m(

4K’pf + 2Kpy),
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and Theorem 4.4 becomes a corollary of Theorem 4.3. Compared with Theo-
rem 4.1, Theorem 4.3 gives a much sharper concentration around the average
value whenever pg is small. O

In the following sections, we will prove the concentration for several dif-
ferent community-detecting functions on both the nonsparse and sparse sub-
classes of Erdés—Rényi (ER) and Chung-Lu (CL) random networks. For all
the nonsparse cases, we can use Theorem 3.1 together with a “divide and con-
quer” technique described in the next section to obtain the concentration. How-
ever, when the community-detecting function has additional properties such as
(H(G))q ~ O(N) as in the graph-bipartitioning case, we can scale ¢ in Theo-
rem 3.1 by N to obtain a better concentration inequality without using the “di-
vide and conquer” technique. For the K-bounded degree subclasses of ER and
CL networks, we will use Theorems 4.1 and 4.3 along with technical estimates
specific to each case.

5. Modularity

Modularity is one of several effective criteria for the detection of community
structures in random networks [Newman 06]. In this section, the theorems pre-
sented above are used to obtain LDP results on the modularity functional over
the nonsparse Erdés—Rényi subclass ER[p, N], and where there is a uniform
bound on the degrees of G over the sparse ER[Np, K| subclass (and the Chung—
Lu CL[N, w, K] subclass, whose properties are given in the next section). The
nonsparse cases here and in the next section are treated with a “divide and
conquer” technique because without prior knowledge of properties of their re-
spective ensemble average, (H(G)),, we have no recourse to the shorter method
of rescaling ¢ in theorem 3.1 by N.
In the modularity problem,
Fj(G) = % (AU - dld]) :

2m

Therefore, the Hamiltonian (3.1) is

hg(g) = —ﬁ Z <Alj — %) SZ'Sj.
1<i#j<N
Here m is the total number of edges in the network, d; is the degree of node
i, and A;; is the adjacency matrix. The Hamiltonian is more complicated than
the previous two cases, since F;;(G) depends not only on the local information
A;; but also on the global information such as d;, m. Suppose G’ has only one



370 Internet Mathematics

more edge (iojo) than G. To apply Theorems 3.1 and 4.1, we need to estimate
|Fi;(G) — F;;(G")] as follows:

4m

~ i (@) = Fiy(&)] (5.1)
&d .
= > [(Ai';’ —Aiy) - (” - dzd’ﬂ 55
TN ; 2(m+1) 2m

=(F) (B -1 imse

1 / did; — d;d;
< E|Ain Jo T Aio,]'o‘ + Z m

L<i#Aj<N
1 1 1 d;d;
e did, A — — |
+‘(2(m+1) 2m>1<;<N g +<m+1>‘ " 2(m+1)‘

Next, we estimate the four terms in (5.1). The first term is |4;, ;, — A’ =1

0,70 |
The second term is as follows:

D

dd, — d;d;

r<igen 2m+1)
1
S I T
2m+ 1), e
+ Y (dy —dj)di + (d, — di, )(d}, —dj,)
1<i#jo <N
< - .
< 2(m+1)(2m+2m+1) <2

For the third term, we have

(et 2) 3

1<i#j<N

1 N N
= omlm 1) (Zd> > d;

< m(2m)2 <2.

For the last term, since d;,d; < m, we obtain

s 2
1 . d;d; < 1 m _q
m+1 Yoo2m4+1)| T \m+1/|2(m+1)

< m? 1 <1
ma , —.
=m0 mr 1) T2
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With the above inequalities, we conclude that

IFf(G) ~ Fy(@)] < o < o
where m* is the minimum value of m required by connectivity. This completes
the proof of the technical estimates needed in the application of Theorems 3.1
and 4.1 below.
For general ER networks without additional nonsparseness or bounded degree
properties and also for sparse ER networks without assumptions on, for instance,

the scale of the ensemble average, (H(G)), Theorem 3.1 gives
t? 2
P(H(G)—(H)g | >t) <2exp <_02(N/m*)2> < 2exp <_02>7

where o = 11/8, which shows that direct application of Theorem 3.1 alone does
not allow us to obtain the concentration.

However, for a sparse ER network with bounded degree, using Theorem 3.2,
we prove the following.

Theorem 5.1. In ER[Np = A] and CL]N, @] network ensembles Q with uniform upper
bound K of the degree, the optimal modularity H(G) satisfies the concentration
inequality

Nt? Nt?
H —(H t) <2 v | <2 — 5575 |-
PUH(G) ~ () | > 1) < exp< 225%)2[(2) o (- )

In some sense, the category of networks with degree upper bound is an extreme
case of sparse networks. Next, we consider the other extreme case, the nonsparse
networks, using the following “divide and conquer” method. The network is
nonsparse if the following hold:

(a) (m)g(y) =PN*/2 (p,c are two constant parameters).

(b) P(m —(m)qy) < —Nt) <exp (—t*/A?), where m is the total number of
edges and p is a constant independent of N.

The meaning of property (b) is revealed in the following lemma.

Lemma 5.2. If in some network, all the edges are independent, then there exists a
constant X independent of N such that the number of edges m satisfies

t2
P(m — (m)qy) < —Nt) < exp (—)\2)
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Proof. We have m =37,y 1a,,=1}, Where 14, _1) € [0,1] are independent
random variables. According to Hoeflding’s inequality [Hoeffding 63],

’P( m — (m) - t><ep 22 N2 (N — 1)?
——— < —t|<exp| ——=—"—"""| .
N(N -1)/2 A cicjen 1
Substituting ¢ by 2t/(N — 1), we get

212 N? t2
_ _ < i S B _
Plm — (m) < Nt)_exp< N(N—l)/2> _exp< )\2>,
where \ = % U

An example of a nonsparse network is an ER network ER(p, N) with constant
probability p for any two nodes to be linked. Replacing ¢ in (b) by uN®~1/2,
where p is independent of N, we get

P(m < (p— p)N"/2) < P(m < ((m)g(y) — pN*/2)) < exp (— p’ N*71).
Finally, we split P(|H(G) — (H), | > t) into two cases according to m, and
get the concentration result
P([H(G) — (H)q | > 1)
= P(m <(p—p)N"/2)P(|H(G) = (H)q | > tlm < (p—p)N"/2)
+P(m = (p—p)N/2)P(|H(G) = (H)q | > tm > (p — p)N®/2)

£2
< exp ( _ u2N2(a71)) . 2eXp(—t2) +1-2exp ( (N/(p— H)Noz)2>

< 2exp (- pr N2 %) + 2exp (—t*N*(p — p)?).
When 1 < a < 2, the inequality shows the concentration. For an ER[N, p] net-
work o = 2, we have the following theorem.

Theorem 5.3. In a nonsparse ER[N, p| network ensemble Q, the optimal modularity
H(G) satisfies the concentration inequality

P(IH(G) — (H)a| > t) < 2exp (—p° N? = %) + 2exp (2N (p — p)?).  (5.2)

6. Concentration of Modularity on the Chung—Lu Network (L[N, @, B],
(L[N, =, K]

Scale-free or power-law random graphs including Barabasi—Albert (BA), Molloy—
Reed (MR), and Chung-Lu (CL) models are frequently encountered in the study
of random networks that arise in social and ecological problems. For brevity,
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we will use the connected random graphs generated by the Chung-Lu model
CL(N,w) [Chung and Lu 02b], which is based on fixed expected degrees se-
quence w. The Chung-Lu model is easier to work with than the Molloy—Reed
[Molloy and Reed 95], Newman—Strogatz—Watts [Watts and Strogatz 98], and
Barabdsi—Albert [Albert and Barabdsi 02] formulations, because it specifies more
information at the level of each node j in the graph G(N). It is based on work-
ing with subsets CL[N, w] of the scale-free random graphs specified by a fixed
(deterministic) expected degree sequence of weights

w=(wy,...,wy), w;=FEldeg(j)]
The average degree in CL[N, wo] is given by

1 N
= N;wl

In the growth process of CL random networks (cf. [Albert and Barabési 02]),
a new node v; is added at time ¢ < N, and m’ random and independent
edges are then added between this node v; and those already present. Thus,
for node i added, the probability of adding a link to node j is w;/ >, w;.
The average degree of the new node v;, i.e., the second-order degree, is given
by

w;

Z TR

whence it is easily shown via an apphcatlon of Cauchy—Schwarz that
d(w) — d(w) > 0.

A key property of CL[N, w] for the proof of concentration of modularity below
is the probability of an edge existing between an arbitrary pair of nodes i and
Jj or that independent random variables A;; =1 (where A(G) is the adjacency
matrix of the random graph G) are given by [Chung and Lu 02a, Chung and
Lu 02b]

In each subclass Q = CL[N, w], the average number of edges m is

N(N —1) wiw;  N(N+1)
<m>9:<2 )N?ZZZ wy  2N? 2w

i=1
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where the average degree d may depend on N through the weights w;.

There are no known concentration results on the whole class CL[N, w]; this
class includes sparse random networks that are not uniformly bounded in the
degree of the nodes. Using the “divide and conquer” technique and Theorem 3.1
twice, we prove LDP results for nonsparse Chung—Lu networks CL [N, @, 3] for
which, in addition to the above properties, the average degree grows with NV,
that is, for § > 0 and B > 0 both independent of N,

d(w) > BN”.
Concentration of modularity in the subclass of bounded-degree Chung—Lu net-
works CL[N, w, K] was proved in the previous section.
Next, by Lemma 5.2, this subclass 2(N) = CL[N, 5] satisfies the nonsparse
property (b) in the following:

(a) (m)g(n) = MN® (here M >0, o > 1 are two constant parameters).

(b) There exists a constant A independent of N such that

t2
P — —Nt) < ——
r(m — (m)gy) < t) < exp < 2)\2)
for every real t > 0.

Property (a) holds by choosing M = B/2 and « = 1 + 3. Replacing t in (b) by
uN” gives

‘LLZNZH
P(m < (M = p)N**1) < P (m < ((m)g — pN"*)) < exp <_ 2\ ) '

By conditioning P(|H(G) — (H), | > t) according to m, we derive that for con-
stants A, 8 > 0 and pu < M = B/2 that do not depend on N,

P(|H(G) = (H)cy, | > 1)
= P(m < (M — )N )P{|H(G) — (H)¢y | >t m < (M —p)N"*1)}
T P(m > (M = NP {[H(G) — (Hyey_ | >t | m > (M — g)N*1)}

QNQB t2 t2 M* QNZS
§exp(u2>\2 >~2exp< )+1 2 Xp( (2M>)
2,28 2 2,28

SQeXp(—'un f )+26Xp (,u)n)

2)2 202 2
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We used the following applications of Theorem 3.1: for every real t > 0,

P{|H(G)_<H>CL“|>t|m<(M_'u)Nﬁ+1}§26xp (_222>,

2007 _ )2 N28
P{|H(G) = (H)cy, | >t|m > (M — )N} < 2exp (_W) ’

with respectively

N(N+1) 25N(N+1) _25 3 2 25
2 = <=1 <= =42
C T 3om? S\ N-1 T(W-o1Z) 167
and when m? > (M — p)? N2+ then
SN 1) 2NN+ 25 N(N+D 1
2 32m2 32 (M — p)?N2P+2 = (M — p)2N28’

where the constant ¢ > 0 comes from the technical estimate (5.1), which is valid
for every pair of random networks G, G’ differing by exactly one edge in any
random ensemble 2. This completes the proof of the following theorem.

Theorem 6.1. In a nonsparse CLy[N, B, ] network ensemble Q, the optimal mod-
ularity H(G) satisfies the following concentration inequality: there exists p > 0
independent of N such that for every real t > 0,

P(H(G) = (H)q [ > 1)

2 n7283 2 2 — )2 N26
§2exp(uN ! >+2exp(t (B/2— p)'N ),

202 202 2

where A =1/2 and 0 = 5/4.

1. Graph Bipartitioning on ER and CL Networks

The graph-bipartitioning problem [Wiethege and Sherrington 87] is the simplest
example in which F;;(G) = 4;; in (3.1):

N
ha(5) = —% > Aijsis;.
ij=1
In this problem, each spin state corresponds to a two-group partition of the given
graph, and the optimum gives the partition with the fewest intergroup links. In
[Fu and Anderson 86], it was shown that this problem for an ER[N, p] network
(every pair of nodes are linked by an edge with probability p > 0, where p is
independent of N) is equivalent to the problem for an infinite-range SK model
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[Sherrington and Kirkpatrick 75], and the authors derived the average solution
in the thermodynamic limit. The authors of [Banavar et al. 87] investigated
another case of an ER[Np = )] network and gave an empirical average solution.
However, without a concentration result, these solutions are only heuristic. Even
if we accept the solution in the thermodynamic limit, the errors of the solutions
applied to a finite system cannot be estimated. Our research completes those
results.

In those studies, the constraint of zero magnetization M = )", s; =0 is re-
quired to force an equal-size partition. With a nonzero fixed magnetization con-
straint ), s; = ¢ # 0, we get the optimal partition with two given group sizes.
Without any constraint on M, we get the overall optimal partition considering
all possible group sizes. No matter which constraint we use, it only changes the
spin configuration space and hence the definition of H(G) = mineg h¢g(s), so we
have exactly the same concentration result and proofs in all of these cases.

For the most general random graph ensemble, we apply Theorem 3.1 as follows.
Since

|1Fi5(G) — Fij (G')] = |Ai; (G) — Ai;(G)| < 1,

we have
P(H(G) = (H)q | >1t) <2exp (_tQ)’

which shows that the concentration is not obtained by this approach. To compare
with the papers mentioned above, we consider the two types of ER network
separately. For the first type, ER[N, p], we assume in addition that (H) is of
order O(N), which is consistent with the results from the replica method [Fu
and Anderson 86], which allows us to scale ¢ with the same order and have the
following result.

Theorem 1.I.  In a nonsparse ER[N,p|] network ensemble Q, the optimal graph
partitioning H(G) satisfies the concentration inequality

P(H(G) — (H)q | > Nt) < 2exp (-N*2).

For the second type, ER[Np = )], for which Np is fixed as N — oo, we prove
a theorem under the additional assumption of bounded degree. Consider the
ER[Np = A] network ensemble generated with parameters N, p, excluding all
samples whose maximum degree exceeds the bound K > Np, where K is inde-
pendent of N. So as N — oo, the degree distribution of the network tends to a
Poisson distribution with expected degree Np but with a cutoff at K. If K is
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large enough, the network ensemble generated like this is almost the second type
of ER. For this case, we use Theorem 4.1 to prove our next result.

Theorem 7.. In an ER[Np = )] ensemble Q with uniform upper bound K of the
degree, the optimal graph partitioning H(G) satisfies the concentration inequality

PH(G) — (H)g | > 1) < 2exp (—t).

For comparison with Theorems 7.1 and 7.2, the simulated concentration for
both cases of ER model is shown in Figure 1. For the constant-p case, the fluc-
tuation of H(G)/N is roughly of order O(N 1), while for the constant-Np case,
the fluctuation of H(G) is roughly of order O(N~1/2).

As an application of the above theorems to a real-world problem, we consider
the circuit partition optimization problem proposed in [Kirkpatrick et al. 83].
The objective function proposed there is equivalent to

1 N

ha(8) = =5 D (Aij/2 = A) sis;.
i,j=1
So F;j = A;;j/2 — X\, where A;; is the number of signals passing between circuits ¢
and j, and X is a balancing coefficient in the optimization [Kirkpatrick et al. 83].
In that study, A;; is no longer a 0-1 random variable, but as long as the A;;
are uniformly bounded, which is quite reasonable in the problem considered, we
can always normalize A;; by the uniform upper bound, and all the theorems
and proofs in this section still hold. The A introduced in this problem represents
a penalty on partitions with unequal groups sizes, making this model a special

case of the modularity method.

8. Concentration for q-Potts Community Structures on ER and CL Networks

This section is devoted to concentration results for the family of objective func-
tionals derived from g-Potts models, which are introduced as a viable alternative
to the modularity community-detection algorithm:

J Y o
ha(5) =—7— Z Aijo(siys)) + 5 - F (), (8.1)
1<i#j<N

where the spins s; € (0,1,...,¢ — 1), A;; = 0,1, form the adjacency matrix of G,
0(si,s;) =1 only if s; = s; and is otherwise zero, f(7,) is a function of the oc-
cupation numbers 7, = (ng,n1,....,ng-1), G(N,m) is a random graph with N
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Figure I. Each data point is obtained by optimization using simulated annealing

on 100 realizations of the ER network. The first figure is for ER with constant
p = 0.05, and the second figure is for ER with constant pN = 5.
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nodes and m links, J is a ferromagnetic interaction energy, and -y is a parameter
that determines the antiferromagnetic activity of the Hamiltonian. The particu-
lar example of these Hamiltonians studied in [Reichardt and Bornholdt 04] is

- SV (R
ha(8) = -1~ Z Az‘j5(8i,8a‘)+%2f’
1<i#j<N s=

where for v > ~*, the optimum of hg favors community structures that re-
flect the network topology of G. The threshold ~+* is fixed by requiring
he (homogeneous) > hg (diverse), which for two communities c(ni,m;) and
¢(ng, my) can be rewritten thus:

h¢ (homogeneous)

J *

= 7%(7’)11 +m2 +m12) + ZmN(N — 1)
J *

= —%(ml +my +mys) + Zm [n1(ng — 1) + na(ny — 1) + 2nyny]
J *

> _R(ml +ma) + Zm [n1(ny — 1) + na(ng — 1)] = hg(diverse),

which is, in turn, equivalent to the normalized value of the outlink density or
intercommunity links density,

Jmlg %

)

2711 N9

since m = mq +mg +mqo and N = ny + ns.

The proofs of LDP over sparse Erdds—Rényi random graphs ER(N,p) and
scale-free Chung—Lu graphs CL (N, w) with expected degree sequence w will be
given for arbitrary f in (8.1), since they do not depend on the form of the function
f. To begin the proof for ER(NV, p), based on the Azuma-Hoefding inequalities,
we define, as before, H(G) = min hg = hg(8p) and label the optimum §;. We
need a technical estimate required in the application of Theorem 3.1.

Lemma 8.1. There is a constant ¢ > 0 independent of N such that for any two

graphs G(N,m’), G'(N,m" = m/ + 1) in the random ensemble Q(N) that differ
in exactly one edge,

|H(G) — H(G")| < c.
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Proof. For a fixed state § = (s1,..., sy ), since the second term f cancels, we obtain
4m/ ’
Tlhe () —ho &) = | Y Ay — Ay s

1<i#j<N

= ‘ [Aiojo - A;()j():| 6(3io ) s,io) <2

)

implying that |h¢g(5) — he(5)| < J/4m. A standard argument based on assum-
ing (without loss of generality) H(G) < H(G'), that is, hg(S)) = minhg =
H(G), hg(3,) = min hg: = H(G"), and hg:(5y) > minhg = H(G'), so hq(5) =
H(G) < H(G") < hgi(8y), implies the result

|H(G) = H(G')| < |ha (50) = har(50)] <

ISR

The rest of the proof is exactly the same as in previous sections. O

Using the divide and conquer technique based on the nonsparse property valid
for ER[p, N] and CLy[N, B, 3] and Theorem 3.1 together with Lemma 8.1, we
prove the following.

Theorem 8.2. In the nonsparse ER[N, p| and CLy [N, B, 3] ensembles 2, the optimal
g-Potts functional H(G) satisfies the following concentration inequalities: there
exists i > 0 independent of N such that for real t > 0,

P(|H(G) — (H)g | > t) < 2exp (—p’ N? — %) + 2exp (—* N (p — p)?),

2 \28 2
wN t
P(H(G) = (H)o | > 1) < 2exp (- "55— — 55
t2(B/2 — p)?N?°
+ 2exp (— (B/ 2M) )7

with A\ =1/2 and o0 = J/2.
Using Lemma 8.1 and Theorem 4.1, we prove the following result.

Theorem 83. In ER[Np, K] and CLI|N,w, K| ensembles Q with uniform upper
bound K on the degree that is independent of N, the optimal q-Potts functional
H(G) satisfies the following concentration inequality: for every real numbert > 0,
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9. Conclusion

In this paper, we have derived LDP-type inequalities for the optimal values of
community-detecting functions on random networks to show their concentration
and stability. There is no concentration for the most general case. We prove
concentration for the general community-detecting function on K-bound sparse
networks and an even sharper concentration when the network ensemble is gen-
erated by a given network and a small perturbation. Then we examine several
specific cases. The three specific community-detecting functions we considered
are modularity, graph bipartioning, and q-Potts community structure. The spe-
cific network types we considered are ER and CL networks, and each of them
in the sparse (K-bound) and nonsparse cases. We proved concentration in these
cases, which means that in these cases, the community-detecting functions are
stable, especially when the system size is large enough.
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