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Abstract. Partitioning biological data objects into groups such that the objects within
the groups share common traits is a longstanding challenge in computational biology.

Recently, we developed and established transitivity clustering, a partitioning ap-
proach based on weighted transitive graph projection that utilizes a single similarity
threshold as density parameter. In previous publications, we concentrated on the graph-
ical user interface and on concrete biomedical application protocols. Here, we contribute
the following theoretical considerations: (1) We provide proofs that the average similar-
ity between objects from the same cluster is above the user-given threshold and that the
average similarity between objects from different clusters is below the threshold. (2) We
extend transitivity clustering to an overlapping clustering tool by integrating two new
approaches. (3) We demonstrate the power of transitivity clustering for protein-complex
detection. We evaluate our approaches against others by utilizing gold-standard data
that was previously used by Brohée et al. for reviewing existing bioinformatics cluster-
ing tools.

The extended version of this article is available online at http://transclust.mpi-inf.
mpg.de.
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1. Background

Partitioning biomedical data objects into clusters such that the objects within
the clusters share common traits is a longstanding challenge in computa-
tional biology. Typical examples are the identification of functionally related
proteins, the detection of clusters of coregulated genes in gene-expression
studies, and the prediction of protein complexes in protein–protein inter-
action networks. The usual starting point of a cluster analysis is a pair-
wise similarity matrix calculated using a function that assigns a similar-
ity value to each pair of objects. One can transform such a matrix into
a weighted undirected graph whose nodes correspond to the objects, and
weighted edges to the similarities. Based on this matrix/graph, clustering strate-
gies aim to identify groups of densely connected elements. A set of user-
defined density parameters controls the size and the number of the resulting
clusters.

The selection of “good” density parameters is crucial and difficult, since it
strongly depends on the similarity function used and the real-world question
behind the cluster analysis. For example, we might want to cluster a set of
proteins into protein superfamilies (large clusters, weak density parameters) or
into protein families (small clusters, restrictive parameters). Typical bioinfor-
matics clustering tools include connected component analysis, k-means, Markov
clustering, restricted neighborhood search clustering, spectral clustering, affinity
propagation, and superparametric clustering [Enright and Ouzounis 00, Enright
et al. 02, Frey and Dueck 07, Paccanaro et al. 06, Wittkop et al. 07, Wittkop et
al. 10, Blatt et al. 96, King et al. 04, Blatt et al. 96].

Previously, we developed transitivity clustering (TC) [Wittkop et al. 10], a
data-partitioning tool for the integrated clustering of biological data based on
solving the so-called weighted transitive graph projection problem (WTGPP).
This problem has been given many names in the literature, most prominently
“weighted cluster editing” [Böcker et al. 08, Rahmann et al. 07, Wittkop et
al. 07]. We proposed a combination of heuristic and exact approaches to tackle
this problem. We stressed that the biologist’s success in typical cluster analysis
depends on more than an efficient algorithm. We discussed the availability of
meaningful pairwise similarity functions for specific biological problems as well
as appropriate ways to estimate application-specific density parameters. We in-
troduced several software toolkits for an easy-to-use graphical analysis of protein
similarity networks for the detection of functionally related proteins. In this pa-
per we address important properties of the transitivity clustering approach as
well as interesting features of the underlying WTGPP that were neglected in
[Wittkop et al. 10].
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1.1. Contributions

While in our previous publication, we concentrated on the graphical user inter-
face and on concrete application protocols for protein homology detection, we
contribute the following theoretical considerations here:

1. Proofs: We show that the average similarity between all elements within
the same cluster is above the threshold, and that the average similarity
between elements from different clusters is below the threshold.

2. Extensions: We extend transitivity clustering with two overlapping cluster-
ing strategies: fuzzy associations and cost reduction. While the first requires
the user to set an additional threshold, the second approach does not need
any further input parameters.

3. Robustness: We evaluate transitivity clustering and the two overlapping
clustering extensions on a typical bioinformatics problem: the identification
of protein complexes in protein–protein interaction networks. In particular,
we evaluate the robustness of our approaches in comparison to other stan-
dard bioinformatics clustering approaches.

1.2. Definitions

Throughout this article, we use several definitions. First, we provide some basic
graph-theoretic definitions. Afterward, we define clustering and the clustering
paradigm behind TC.

Definition 1.1. (Undirected simple graph.) An undirected simple graph G = (V,E) consists
of a set of nodes V and a set of edges E ⊆ (

V
2

)
, where

(
V
2

)
denotes the set of

all two-element subsets of V . Following this definition, the edges are undirected,
and the graph contains no self-loops or multiple edges between two nodes.

We will write uv for an unordered pair {u, v} ∈ (
V
2

)
.

Definition 1.2. (Induced subgraph.) An induced subgraph G′ = (V ′, E′) of a graph G =
(V,E) consists of a chosen set of nodes V ′ ⊂ V and the set of edges E ′ := E ∩(
V ′
2

) ⊂ E, so E ′ consists of exactly those edges that connect elements of V ′ and
are present in E.

Definition 1.3. (Path.) In a graph G = (V,E), a path between two nodes u, v ∈ V is
a sequence of nodes u = v1 , . . . , vn = v for which every connecting edge exists,
i.e., for 1 ≤ i ≤ n − 1, {vi, vi+1} ∈ E.
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Definition 1.4. (Connected component.) A connected component of an undirected simple
graph G = (V,E) is an induced subgraph G′ = (V ′, E′) of G, where V ′ is a max-
imal subset of V , such that there exists a path between every two nodes in G′.

Clustering is defined as the assignment of objects into groups such that objects
within the same group are more similar to each other than to objects from
different groups. Here, we distinguish two types of clusterings: (1) Partitional
clustering divides the set of objects into disjoint groups, and (2) overlapping
clustering allows assignments of objects to multiple groups.

Definition 1.5. (Partitional clustering.) A partitional clustering of a set of objects S

is a subset S ′ = {s1 , . . . , sn} of the power set P(S) such that S =
⋃n

i=1 si and
si ∩ sj = ∅, 1 ≤ i �= j ≤ n.

In the remainder of this article, by “clustering” we shall mean “partitional
clustering” if not stated otherwise.

Definition 1.6. (Overlapping clustering.) An overlapping clustering of a set of objects S is
a subset S ′ = {s1 , . . . , sn} of P(S) such that S =

⋃n
i=1 si .

The clustering model underlying transitivity clustering is based on solving the
so-called weighted transitive graph projection problem (WTGPP). We need to
define transitivity first.

Definition 1.7. (Transitive graph.) An undirected simple graph G = (V,E) is called
transitive if

for all triples uvw ∈ (
V
3

)
, uv ∈ E and vw ∈ E implies uw ∈ E.

The WTGPP is now defined as follows.

Problem 1.8. (Weighted transitive graph projection problem.) Given a set of objects V , a
threshold t ∈ R, and a pairwise similarity function sim:

(
V
2

) → R, the graph G

is defined as

G = (V,E); E =
{

uv ∈ (
V
2

)
: sim(uv) > t

}
.

The weighted transitive graph projection problem is the determination of a
transitive graph G′ = (V,E ′) such that there exists no other transitive graph
G′′ = (V,E ′′) with cost (G → G′′) < cost (G → G′). Here the modification costs
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are defined as

cost (G → G′) :=
∑

uv∈E \E ′
|sim (uv) − t|

︸ ︷︷ ︸
deletion cost

+
∑

uv∈E ′\E
|sim (uv) − t|

︸ ︷︷ ︸
addition cost

.

Note that more than one solution for a given problem instance may exist, but this
case almost never occurs in practice if the similarity function is diverse and real-
valued. Further, note that this problem is NP-hard [Křivánek and Morávek 86]
as well as APX-hard [Charikar et al. 03].

1.3. Brief Overview of Transitivity Clustering

We report the resulting connected components of G′, i.e., the solution of the
WTGPP of G, as clusters (partitional clustering). To compute the solution of this
hard problem, we developed and implemented transitivity clustering (TC). We
utilize a combination of heuristic [Rahmann et al. 07, Wittkop et al. 07] and exact
[Böcker et al. 08] algorithms; see the TC paper [Wittkop et al. 10] for more details
about the algorithms, the strategy, the software, and its application to genetic
sequence clustering. We briefly highlight the main advantages of transitivity
clustering.

1. As we will demonstrate for protein–protein interaction network clustering,
transitivity clustering is very robust against a certain noise level in the
similarity function.

2. To adjust the number and size of the clusters, transitivity clustering needs
only one density parameter: the similarity threshold. It directly corresponds
to the similarity function used and thereby ensures easy interpretability
of the clustering results. In this article, we will show (1) that the average
similarity between elements within one cluster is above the chosen threshold
and (2) that the average similarity between elements from different clusters
is below the threshold.

3. Transitivity clustering comes with a set of user-friendly implementations
and interfaces: (1) A web server provides easy access for small-scale data
sets. (2) Powerful stand-alone software provides command-line as well as
GUI-based access to all TC features. (3) Three Cytoscape [Cline et al. 07]
plug-ins allow for integrated clustering and visualization of many kinds of
biological similarity networks. TC is free to use, needs only minimal user
input, and offers comprehensive aid with the most important steps in a
typical biomedical cluster analysis workflow.
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4. The most important of these steps is the identification of a meaningful
similarity threshold that controls the size and granularity of the clusters.
To aid the end user with this important step, we deliver functions with
transitivity clustering that allow for incorporating background knowledge,
for instance small gold standards, into the clustering procedure in an easy-
to-use fashion.

5. Several extended functions for eased data handling and visualization, in-
creased accuracy, and processing speedup are directly accessible. The ap-
plicability of upper bounds for node merging may serve as an example here.

2. Properties of the Weighted Transitive Graph Projection Problem

The first property of the weighted transitive graph projection problem (WTGPP)
that we prove may considerably reduce the running time of any algorithm that
solves this problem. We show that it is sufficient to solve the WTGPP for each
connected component of a similarity graph individually. Splitting the problem
into several smaller problems allows one to solve this NP-complete problem even
for very large data sets with hundreds of thousands of nodes. This fact has been
mentioned several times in the literature [Rahmann et al. 07, Böcker et al. 08]
and lies at the core of many algorithms for the problem, but no formal proof has
been provided.

Theorem 2.1. Given a set of objects V , a threshold t ∈ R, and a pairwise similarity
function sim:

(
V
2

) → R and a graph G = (V,E) as defined in the WTGPP, to
solve the WTGPP of G it is sufficient to solve the WTGPP of the connected
components G1 , . . . , Gm of G, i.e., if G′

1 , . . . , G
′
m are solutions for the WTGPP

of the connected components of G, then G′ =
⋃m

i=1 G′
i is a solution for the WT-

GPP of G.

Proof. To prove this theorem, it is sufficient to show that there exists no solution
of a WTGPP with cliques that intersect with multiple connected components of
the similarity graph G. This will be done by assuming that such a solution exists
and deriving a contradiction.

Let G′ be a solution of a WTGPP with cliques that contain objects from
different connected components of G. Edges in G′ between objects of different
connected components of G correspond to a similarity smaller than the threshold
t due to the definition of the similarity graph. Hence, deleting them results in
a decrease in costs. Furthermore, deleting all edges between a subset of nodes
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of a clique and all other nodes of that clique leads to two disjoint cliques, since
all nodes within the two sets are still connected. Consequently, splitting the
cliques in G′ into cliques that have no intersection with two different connected
components of G reduces the costs and still respects the transitivity rule. It is,
in turn, a transitive graph with lower costs than G′. This is a contradiction to
the minimal-cost criterion of a solution of a WTGPP.

One of the advantages of transitivity clustering is its simplicity. Only one
density parameter has to be chosen to determine the number and size of the
resulting clusters. In the following, we will prove properties of a clustering that
allow a user to interpret the clustering in the context of the chosen similarity
function and threshold. Furthermore, these properties assist in the detection of
an appropriate threshold.

Theorem 2.2. Let C = {C1 , . . . , Cm} be the clusters of a solution G′ = (V,E ′) for a
given WTGPP with threshold t and similarity function sim.

(i) The mean similarity between an element u and all other elements of its
clique Cu is greater than or equal to the threshold t for all elements u ∈ V .

(ii) The mean similarity between all elements of one cluster Ci is greater than
or equal to t for all cliques Ci ∈ C.

Proof. Statement (ii) is a direct consequence of (i). To prove (i), the negative
proposition is assumed and a contradiction derived. Let u be an element of the
cluster Ci of size |Ci | ≥ 2. Assume that the mean similarity between u and all
other elements of Ci is below t:

mean sim(u,Ci) =
1

|Ci | − 1

∑
v∈Ci \{u}

sim(uv) < t

⇐⇒
∑

v∈Ci \{u}
sim(uv) < t · (|Ci | − 1).

Now, C ′ = {C1 , . . . , Ci \ {u}, . . . , Cm , {u}} is a decomposition of the elements
into cliques and hence a putative solution for the underlying WTGPP. The costs
for C ′ can be calculated using the costs that appear to build C and adding all
costs to remove edges between u and Ci . Note that these additional costs may
be negative for edges that did not exist in the initial graph and had to be added
to create Ci . Using the assumption that the mean similarity between u and all
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elements of Ci is below t, the cost difference between C and C ′ is consequently∑
v∈Ci \{u}

(sim(uv) − t) =
( ∑

v∈Ci \{u}
sim(uv)

)
− (t · (|Ci | − 1)) < 0.

This is a contradiction to the assumptions that C is a solution of the WTGPP,
since there exists a decomposition into cliques with lower costs.

A statement about the average similarity between an object and all the objects
of a foreign cluster is not possible. In the following example we illustrate the case
where the average similarity of one element to a different cluster then its own
can be above the threshold that was used to obtain the clustering.

Example 2.3. Let V = {a, b, c} be the elements of interest. Let the similarities
between these elements be sim(ab) = 0.5, sim(ac) = 0, and sim(bc) = 1. For a
threshold t = 0.4, the clustering obtained by solving the corresponding WTGPP
is C = {C1 , C2} = {{a}, {b, c}}. The mean similarity between objects within one
cluster is obviously above the threshold, and the mean similarity between these
clusters is below the threshold:

sim(ab) + sim(ac)
2

= 0.25 < t.

The mean similarity between b and a, which is one element from one cluster and
all elements from the other, is 0.5 and hence above the threshold.

It is possible, though, to make a statement about the average similarity be-
tween two clusters.

Theorem 2.4. Let C = {C1 , . . . , Cm} be the cliques of a solution to a given WTGPP
with threshold t and similarity function sim. The mean similarity between two
cliques Ci and Cj is below the threshold for all 1 ≤ i < j ≤ m.

Proof. Again the proof for this theorem is done by assuming the negated propo-
sition and deriving a contradiction. Let Ci and Cj with i �= j be cliques with
average similarity above the threshold t. The decomposition of the objects into
cliques C ′ = (C \ {Ci, Cj}) ∪ {Ci ∪ Cj} is a putative solution for the WTGPP.
The costs for C ′ can again be calculated using the costs for C and adding all
costs for adding the connective edges between Ci and Cj :

costs(C ′) = costs(C) +
∑
u∈Ci

∑
v∈Cj

(− sim(uv) + t).
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Consequently, edges that were initially removed between Ci and Cj to obtain C

contribute negatively to the additional costs, while edges that were not present
in the similarity graph of this problem increase the costs of C ′.

In order to establish a contradiction to the assumption that C is a solution
for the WTGPP, all that remains is to show that the second term is below zero.
This can easily be derived from the initial assumption that the average similarity
between Ci and Cj is above the threshold, since

mean sim(Ci, Cj ) =
1

|Ci | · |Cj |
∑
u∈Ci

∑
v∈Cj

sim(uv) > t

⇐⇒
∑
u∈Ci

∑
v∈Cj

(sim(uv) − t) > 0.

3. Extension to Overlapping Clustering

Up to now, we have described a partitioning clustering approach in which each
object is assigned to exactly one cluster. This may be problematic for some ap-
plications in which we might wish to assign some objects to multiple clusters. In
our robustness analysis, we will present such an example: Some proteins might
act as parts of more than one protein complex. To account for this, we inte-
grated two new methods for creating an overlapping clustering using WTGP.
The first approach creates a fuzzy assignment. Based on the similarity function,
each element–cluster pair is assigned a value between zero and one, which is sub-
sequently used to assign those objects to additional clusters whose value exceeds
a second threshold. The second method is more closely related to the initial WT-
GPP. Here, the WTGPP is solved first for the user-given threshold. Afterward,
single elements are co-assigned to the remaining clusters if this reduces the over-
all costs. No second threshold is required. Note that the emerging assignment of
objects to multiple clusters contradicts the transitivity rule. Formal descriptions
follow.

3.1. Fuzzy Association

In the following, let C = {C1 , . . . , Cm} be a clustering obtained for a specific
threshold by solving the corresponding WTGPP, let V = {v1 , . . . , vn} be the
objects that were clustered, and let sim:

(
V
2

) → R be the pairwise similarity
function. Without loss of generality, we can assume that sim:

(
V
2

) → R
+, since

a similarity function that has negative values can be transformed into a strictly
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positive function by adding the lowest value to all similarities and the chosen
threshold. This will not change the outcome of the clustering, since the objective
function of the WTGPP works only on the difference between similarity and
threshold, which does not change.

Our method assigns to each object vi and each cluster Cj a value fi,j =
f(vi, Cj ) ∈ [0, 1] such that

∑
j

f(vi, Cj ) = 1 for all vi ∈ V.

To obtain f , first the mean similarity mi,j between every pair of object vi and
cluster Cj is calculated and stored in the matrix M = (mi,j ) ∈ R

n×m :

mi,j =
1

|Cj \ vi |
∑

v∈Cj ,v �=vi

sim(vvi).

The matrix is transformed into a column stochastic matrix F = (fi,j ) ∈ [0, 1]n×m

to fulfill the criteria as defined above. The value fi,j determines how well an ele-
ment vi fits into a cluster Cj . To get an overlapping clustering, a second threshold
is needed. This value t2 ∈ [0, 1] influences the number of allowed overlaps. The
overlapping clustering is created by adding an element vi to an additional cluster
Cj if fi,j exceeds t2 .

Choosing a low value t2 would lead to many overlaps, while a value t2 ≈ 1
would assign only a few elements to multiple clusters. We exclude singletons
from fuzzy assignments due to two factors that would increase the false posi-
tive assignment of nodes to clusters. Firstly, a singleton node does not have an
average similarity to its own cluster, and thus it is likely to be assigned to an
additional cluster, although the initial clustering suggests otherwise. Secondly,
the average similarity of a node with a singleton cluster is the actual similarity
between the two nodes. Transitivity clustering is a robust clustering technique,
since erroneous similarities can be compensated by their neighboring edges. This
advantage would be lost if an assignment were based on a single edge and thus
would increase the chance of false-positive groupings.

3.2. Cost Reduction

The basic concept of cost reduction (CR) is to assign objects to an additional
cluster if the internal costs are below zero. By adding a node to an additional
cluster and hence all edges between the node and the cluster, the overall costs
may be reduced if initially removed edges are added again.
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Starting with a partitional clustering C = {C1 , . . . , Cm}, each object u can be
assigned to an additional cluster Cj if

costs(u,Cj ) =
∑
v∈Cj

(sim(uv) − t) < 0.

We now proceed in a greedy fashion: For the combination u,Cj with smallest
costs and costs(u,Cj ) < 0, the altered clusters C ′ = {C1 , . . . , Cj ∪ {u}, . . . , Cm}
replace the previous clusters, and the process starts again. These operations
are executed until no further improvement is possible, i.e., no assignment of an
object to an additional cluster would reduce the internal costs of any cluster.
As before, singletons are excluded as well as assignments to singletons. Note
that Theorem 2.2 still holds for this overlapping clustering, since elements can
be added to one cluster only if this reduces the overall cost, i.e., the average
similarity between the newly added element and all other elements of the new
cluster is above the threshold.

4. Robustness Analysis

In the following robustness analysis, we investigate the effect of noise within the
utilized similarity function. We simulate this noise by randomly modifying edges
in the input data. Subsequently, we compare the ability of transitivity clustering
and other clustering approaches to reconstruct a given gold standard from such
perturbed data.

Previously, [Brohée and van Helden 06] presented an evaluation of bioinformat-
ics clustering tools for the task of reconstructing protein complexes in protein–
protein interaction (PPI) networks. The authors compared Markov clustering
(MCL), restricted neighborhood search clustering (RNSC), MCODE, and su-
perparametric clustering (SPC). In order not to replicate existing results, we
use only the best tools from Brohée et al.’s evaluation study, namely MCL and
RNSC.

In what follows, we use different quality functions to measure the clustering
accuracy. For a summary and formal description, the reader is referred to the
appendix, Section 6.

4.1. Data

We use the same data as in [Brohée and van Helden 06]. The data set con-
sists of 1095 yeast proteins obtained from the MIPS database [Mewes et al. 04].
As in [Brohée and van Helden 06], the protein complex annotations of these
proteins are used as a gold standard. Note that proteins may belong to multiple
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protein complexes. Hence, the data set is also suited to evaluating the overlap-
ping clustering functionality of transitivity clustering. We start with an initial
graph G = (V,E) in which the proteins are represented as nodes. We draw edges
between all proteins known to interact as a protein complex.

Brohée et al. modified this graph by randomly adding and deleting a certain
number of edges.1 In what follows, let Ai,j denote the graph where i% of edges
are added and j% of edges are deleted.

4.2. Evaluation Method

The techniques MCL and RNSC performed best in the review of [Brohée and
van Helden 06]. We proceed with TC in the same way and compare the results
with MCL and RNSC. For all input graphs Ai,j , we set all edge weights to
1. Now we add edges between all unconnected nodes and set the edge weight
to 0. This results in a similarity graph. Note that a protein may contribute to
multiple complexes, which makes the graph intransitive for similarity thresholds
greater than 0. Afterward, we iteratively cluster the input graphs Ai,j for varying
thresholds between 0 and 1. For each clustering result, we compare against the
gold standards and calculate the F-measure as a measure of quality.

We evaluate the robustness of our approach in accordance with [Brohée and
van Helden 06]. Therefore, the presented results are created with one fixed den-
sity parameter for all modified graphs Ai,j . We used a series of different density
parameters for MCL and RNSC. For both methods, we chose the density pa-
rameter that achieves the highest average F-measure over all graphs Ai,j , since
it reflects the most robust scenario. Note that we play fairly, since we apply a
single density parameter (the one that provides the best average results) to each
graph individually, similarly to what is done in [Brohée and van Helden 06].
Subsequently, we performed analogous analyses with the two previously defined
overlapping methods of TC.

In contrast to the original study, we use the F-measure to assess the clustering
quality. We argue that the separation, which serves as the main quality measure
in the study from Brohée et al., is a biased measure, since it strongly depends
on the number of clusters. A conservative tool, for instance, that produces a
comparably high number of singletons cannot reach a good score. The F-measure
compares a gold-standard cluster with the best cluster in the produced clustering
and hence ignores this drawback. A drastic illustration of the problem with the
separation is a comparison of the gold standard with itself: For the Brohée et al.

1 Modified graphs are available at http://rsat.bigre.ulb.ac.be/rsat/data/published data/
brohee 2006 clustering evaluation/.
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data this leads to a separation of 0.62, which is smaller than the results achieved
by any clustering methods. In contrast, the F-measure is 1 (the highest possible
value) for this comparison, as for any other clustering compared to itself.

4.3. Evaluation Results

Figure 1 illustrates the results for all altered graphs by means of a heat map
whose colors represent the achieved F-measures. TC and RNSC produce similar
results for the tested graphs. Both methods are robust against edge additions and
quite robust against edge deletions. For the original graph with no edge additions
or deletions, these two methods achieve a high F-measure of 0.85. After doubling
the number of edges and deleting 40% of the original edges, RNSC still achieves
an F-measure of 0.69 and TC one of 0.73. MCL generally has lower F-measures
and seems to be less robust against edge additions. Starting with an F-measure
of 0.79 for the unaltered graph, the same scenario as above leads to an F-measure
of only 0.46. On the other hand, it seems very robust against edge removals, since
the F-measure drops by only 0.01 if 40% of the initial edges are deleted and no
edges are added.

Table 1 presents the results of the two overlapping methods fuzzy associa-
tion (FA) and cost reduction (CR) in comparison to the partitioning method

Figure 1. Results of robustness analysis. The F-measure serves as quality mea-
sure (color figure available online).
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0 05 10 20
0 0.85/0.87/0.87 0.85/0.86/0.86 0.85/0.85/0.86 0.85/0.85/0.86
5 0.85/0.86/0.87 0.85/0.86/0.86 0.85/0.85/0.86 0.85/0.85/0.85
10 0.84/0.85/0.86 0.85/0.85/0.86 0.85/0.85/0.86 0.85/0.85/0.85
20 0.83/0.83/0.85 0.84/0.84/0.85 0.84/0.84/0.84 0.83/0.83/0.84
40 0.78/0.79/0.81 0.79/0.8/0.81 0.8/0.8/0.81 0.78/0.79/0.79
80 0.4/0.42/0.44 0.42/0.43/0.45 0.39/0.43/0.41 0.37/0.39/0.4

40 80 100
0 0.85/0.85/0.85 0.83/0.84 /0.83 0.83/0.82/0.82
5 0.84/0.84/0.84 0.83/0.83/0.82 0.82/0.82/0.81
10 0.83/0.83/0.84 0.82/0.82/0.82 0.81/0.81/0.81
20 0.82/0.81/0.83 0.8/0.8/0.8 0.79/0.79/0.79
40 0.77/0.78/0.77 0.73/0.74/0.72 0.73/0.73/0.7
80 0.36/0.36/0.37 0.32/0.31/0.32 0.31/0.3/0.31

Table 1. Comparison of the overlapping methods of TC. The F-measures are for
partitional transitivity clustering, the fuzzy associations method, and the cost
reduction method. The columns represent the percentage of added edges, while
the rows represent the percentage of removed edges.

of transitivity clustering. Fuzzy association requires a second threshold, which
is set here to a conservative value of 0.8. This means that only elements with
high similarity to an additional cluster are assigned to multiple groups. Both
overlapping methods FA and CR are as robust as the partitioning method and
even achieve higher F-measures in most cases.

5. Conclusion

In previous publications we presented transitivity clustering, a clustering tool
that can be applied to various kinds of biological data sets to identify tightly
connected substructures. Here, we have contributed theoretical foundations re-
garding the robustness of TC. The similarity threshold, the only density param-
eter of TC, determines the cluster associations in such a way that the average
similarity within the clusters is above the threshold, and that between the clus-
ters is below the threshold.

We believe that this property of TC plays an important role in its robustness
against a certain noise level in the similarity function, because mere noise is
unlikely to change the average similarity of a certain cluster such that the result-
ing clusters would change in a significant way. In addition, we have presented
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two extensions of TC that allow for the more realistic clustering scenario of over-
lapping clustering. The first, fuzzy association, lets the user adjust the amount
of desired overlap, while the second, cost reduction, has no parameters and still
guarantees the above-mentioned properties regarding the average similarity. We
argue that particularly the overlapping clustering methods will prove useful in
further biomedical applications.

6. Appendix: Quality measures

We evaluate clustering quality by comparing it with a gold-standard assignment.
This external quality evaluation allows one to compare different approaches that
optimize different internal optimization functions. For this purpose, various mea-
sures have been developed. Here we briefly introduce all of these measures.

In the following, let C = {C1 , . . . , Cn} be the clustering obtained from the
algorithm, and K = {K1 , . . . ,Km} the reference clustering. Furthermore, let T =
(ti,j ) ∈ N

m×n denote the matrix each entry of which is the number of common
objects between Ki and Cj ,

ti,j := |{Ki ∩ Cj}|, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

This section uses also the standard abbreviations for true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). Another notation
is |T | for the sum of all entries in T and |T·,j | and |Ti,·| for the sums of the entries
of the ith row and jth column respectively.

According to the evaluation of clustering algorithms for PPI networks in
[Brohée and van Helden 06], the following definitions are given.

Definition 6.1. (Positive predictive value.) The positive predictive value (PPV),

PPV =
TP

TP + FP
∈ [0, 1],

describes the ratio of correct predictions to all predictions. It can reach the value
1 only if no false positive predictions occur, i.e., in the case of clustering, if no
pair of objects that belong to different clusters in the gold standard are assigned
to the same cluster. Since the reference clustering may be overlapping, the PPV
for each pair of clusters Cj ,Ki is defined as

PPV(Cj ,Ki) =
ti,j
|T·,j | .
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A clusterwise PPV can then be defined for each cluster Cj as

PPV(Cj ) = max
1≤i≤m

PPV(Cj ,Ki).

To get an overall PPV between two clusterings, the clusterwise PPVs are incor-
porated as follows:

PPV(C,K) =

∑n
j=1 PPV(Cj ) · |T·,j |

|T | =
1
|T | ·

n∑
j=1

(
max

1≤i≤m

ti,j
|T·,j |

)
· |T·,j |.

Definition 6.2. (Sensitivity.) The sensitivity

Sen =
TP

TP + FN

reflects the quantity of the correct predictions in relation to all true class mem-
bers. In the case of clustering, this is the ratio between objects that are in the
same cluster, both in the reference clustering and in the obtained clustering,
against all objects in the reference clustering.

A reference-cluster-wise sensitivity is defined as

Sen(Ki) = max
1≤j≤n

ti,j
|Ki | .

A general sensitivity can then be calculated as

Sen(C,K) =
∑m

i=1 |Ki | · Sen(Ki)
|K| =

∑m
i=1 |Ki | · max1≤j≤n

ti , j

|Ki |
|K| .

Definition 6.3. (Accuracy.) The accuracy (ACC) is a trade-off between PPV and sensi-
tivity. Both values on their own can be high even if the clustering is not perfect. A
clustering with only singletons would lead to a high PPV, since no false positive
prediction occurs, while building one big cluster containing all elements would
have the maximal sensitivity value. Neither of these examples is necessarily de-
sirable. Hence, a combination of these values, the accuracy, evaluates the quality
better.

The arithmetic accuracy is the arithmetic mean of sensitivity and PPV:

ACCarithmetic(C,K) =
Sen(C,K) + PPV(C,K)

2
.

The geometric accuracy takes the geometric mean of sensitivity and PPV:

ACCgeometric =
√

Sen(C,K) · PPV(C,K).
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A novel distance measure was introduced in [Brohée and van Helden 06] called
separation. In contrast to the above-described values, it takes all pairwise rela-
tions between the clusters obtained from the algorithm and the reference clusters
into account, and does not concentrate on the best-matching cluster.

Definition 6.4. (Separation.) The separation for each pair of clusters Cj and Ki is
defined as

Sep(Cj ,Ki) =
t2i,j

|Ti,·| · |T·,j | .

Now it is possible to define the separation for each cluster Cj and Ki as the sum
of pairwise separations

Sep(Cj ) =
m∑

i=1

Sep(Cj ,Ki)

and

Sep(Ki) =
n∑

j=1

Sep(Cj ,Ki).

To obtain an overall value for the two clusterings C and K, one takes the mean
of separations for all clusters in C (clusterwise) and K (reference-cluster-wise)
and subsequently calculates the geometric mean:

Sep(C,K) =

√∑n
j=1 Sep(Cj )

|C| ·
∑m

i=1 Sep(Ki)
|K|

=

∑n
j=1

∑m
i=1 Sep(Cj ,Ki)√

m · n

=

∑n
j=1

∑m
i=1

t2
i , j

|Ti , ·|·|T ·, j |√
m · n .

Definition 6.5. (F-measure.) The last quality measure is based on the general definition
of recall (sensitivity), precision (PPV), and the F-measure:

Recall or sensitivity: TP
TP+FN .

Precision or PPV: TP
TP+FP .

F-measure: 2 · Precision·Recall
Precision+Recall = 2·TP

(TP+FP)+(TP+FN) .

In [Paccanaro et al. 06], the F-measure for comparing a clustering C against a
reference clustering K was modified in the following way. First, the best cluster
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Cj for each cluster Ki of the reference is found with respect to the standard
definition of F-measure,

F-measure(Ki) = max
1≤j≤n

2 · ti,j
|Cj | + |Ki | .

The overall F-measure is then defined as

F-measure(C,K) =
1∑m

i=1 |Ki |
m∑

i=1

(|Ki | · F-measure(Ki))

=
1∑m

i=1 |Ki |
m∑

i=1

(
|Ki | · max

1≤j≤n

2 · ti,j
|Cj | + |Ki |

)
.
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