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Abstract. Network visualization tools offer features enabling a variety of analyses to sat-
isfy diverse requirements. Considering complexity and diversity of data and tasks, there
is no single best layout, no single best file format or visualization tool: one size does not
fit all. One way to cope with these dynamics is to support multiple scenarios and work-
flows. NAViGaTOR (Network Analysis, Visualization & Graphing TORonto) offers a
complete system to manage diverse workflows from one application. It allows users
to manipulate large graphs interactively using an innovative graphical user interface
(GUI) and through fast layout algorithms with a small memory footprint. NAViGa-
TOR facilitates integrative network analysis by supporting not only visualization but
also visual data mining.

1. Introduction

Many real-world systems in diverse fields including physics, biology, and eco-
nomics can effectively be represented as networks. Although human beings are
known to perform image pattern recognition rapidly, nongraphical mathematical
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packages are typically used to analyze networks, and visualization is often left
as an afterthought [Perer and Shneiderman 08].

Exploratory data analysis through network visualization remains a challenge.
Overlapping nodes and edges make the interpretation of large networks difficult,
so much so that these are sometimes referred to as “hairballs” [Weinberg 10].
However, integrated network analysis and visualization is emerging as a fruitful
approach to revealing patterns in data. Such an approach may lead to improved
understanding of complex systems [Hidalgo 08]. Due to many different types
of users and tasks, “one size does not fit all,” and a useful tool needs to be (1)
flexible in satisfying diverse user needs through various workflows, (2) intuitive to
allow for different displays with a mix of automated and manual improvements,
and (3) scalable in terms of memory and speed, which is especially important
for large graphs.

NAViGaTOR addresses many of these needs through an integrated approach
to network analysis and visualization. We describe a visualization system ca-
pable of handling large-scale networks that supports both 2D and 3D views
and provides ability to interactively manipulate the layout and visual at-
tributes with a smaller memory footprint than most other graphing appli-
cations available [Brown et al. 09]. Considering arbitrary entities as nodes,
and relationships between them as edges between the nodes, NAViGaTOR
visualizes the corresponding graph using OpenGL acceleration [Shreiner 99]
and a dynamic force-directed layout algorithm, optimized for multiple CPU
cores.

NAViGaTOR supports multiple analysis functions that can be performed on
graph objects from any application domain. It also provides export capabili-
ties (a graph can be exported as a list of edges or as an adjacency matrix)
to allow for more customized analyses in tools such as R and Matlab. The
software provides (1) the ability to process large data sets representing graphs
from different file formats (e.g., PSI-MI XML [Kerrien et al. 07], BioPAX OWL
[Demir et al. 10, Antoniou and Harmelen 09], GML [Himsolt 96], MITAB [Ker-
rien et al. 07], tab-delimited), (2) tools to manipulate, modify, and perform
analyses on graphs, and (3) export functionality in various file formats (e.g.,
PSI-MI XML, GML, tab-delimited) as well as image formats including vector
graphics.

In this paper we describe how NAViGaTOR handles complex data-exchange
formats and memory usage. We compare the tradeoffs of data-rich XML file
formats to store ancillary contextual data for the graph as opposed to tab-
delimited file formats that contain only basic link information. NAViGaTOR
provides tools to perform data analysis and graph layout in a user-friendly
package.
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2. Workflows

2.1. Loading Experimental Data

NAViGaTOR depicts a network using a graph structure. A variety of standards
are available for data import (such as PSI-MI XML and BioPAX OWL for bi-
ological networks, GML for graphs, as well as tab-delimited files), each with a
different focus on the ancillary data to be associated with the graph’s nodes
and edges (also referred to as graph objects). Many existing network data sets
are readily available in these formats, and each can be easily loaded into NAV-
iGaTOR using each format’s respective file loader (such as tab-delimited and
GML). The network format of choice balances the need for generality, speed,
and memory requirements, as described below.

2.1.1. Text Formats. Two text formats are the tab-delimited text format and Graph
Modeling Language (GML).

Tab-delimited text format: The tab-delimited text format is the most generic
way to load a network to visualize within NAViGaTOR. Each edge is represented
by a tab-delimited line containing unique identifiers for its incident nodes and
ancillary data describing the properties of nodes and edges. The edges can be
generated computationally, extracted from spreadsheet files, or entered manually.
From within the text loader, the user is prompted by a series of dialog windows
to describe the data being entered, indicating identifiers and ancillary data to
be associated with nodes or edges. Several common data types are supported,
including numbers, text, and XML.

GML: The Graph Modeling Language [Himsolt 96] is a text-based format that
stores the layout and visual attributes associated with a graph such as node
size and edge thickness, which gives GML a much smaller memory footprint
when rendering the network in NAViGaTOR than the XML-based file formats.
For example, memory footprint may be reduced from 193 MB to 124 MB when
loading a network with 712 nodes and 555 edges in BioPAX format (a reduc-
tion of 35%) instead of the same network in GML format. However, since the
GML format does not store much ancillary data with the graph, it renders it
less versatile than the biology-specific formats. The GML format is special-
ized for saving the visual appearance of the nodes and edges as well as the
layout.
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2.1.2. XML Formats. Three XML formats supported by NAViGaTOR are PSI-MI
XML, BioPAX, and the NAViGaTOR XML-based file format.

PSI-MI XML format: The PSI-MI XML format [Kerrien et al. 07] is a com-
munity standard data-exchange format for representing molecular interactions,
maintained by the HUPO Proteomics Standards Initiative [Orchard et al. 03].
Networks are described by interactors and interactions, as well as information
regarding nomenclature, supporting literature, and experimental data arranged
according to a structured XML schema.1 Although this format facilitates data
exchange between many databases and tools, it also creates storage and data
visualization overhead.

BioPAX: The BioPAX format [Demir et al. 10] boasts similar functional-
ity to that of the PSI-MI format, but it focuses on describing biological
pathway information rather than the broader area of molecular interactions
(http://www.biopax.org/). Within NAViGaTOR, physical entities described by
a BioPAX file, as well as some of its logical constructs, are represented as nodes.
Nodes are assigned different shapes based on what underlying concept they rep-
resent. Like PSI-MI XML, the BioPAX format is very useful for data exchange,
but it increases the data storage and data visualization requirements. Currently
BioPAX 1 and 2 are supported in NAViGaTOR version 2.2, and we are planning
to support BioPAX 3 soon.

NAViGaTOR XML-based file format: This format focuses on storing both
graph data and application setting. The biology-specific formats (such as PSI-MI
XML and BioPAX) are more concerned with storing annotations of experimental
data, interaction sources, and other biologically relevant information than the
visual appearance and layout of the network. In addition to basic information
about interactions and related proteins, saving a network in the NAViGaTOR
XML format retains the state of the network, which includes the graph layout,
node and edge annotations, visualization settings, and lists of saved subsets.

Many real problems require loading a large amount of node, edge, and graph
annotation data into NAViGaTOR. Storage of this information competes with
limited memory resources required for visualization purposes. Although XML
formats contain a better structure than tab-delimited text format, storing this
ancillary information in the computer’s memory while rendering the network and
allowing for interactive functionality comes at the cost of considerable overhead.

1 Available online at http://psidev.sourceforge.net/mi/rel25/src/MIF25.xsd (accessed 17-
December-2010).
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For instance, the BioPAX file format written in the Ontology Web Language
(OWL) contains a strict hierarchy enforced by an underlying ontology.

Importing the entire XML tree allows us to preserve the parent–child rela-
tionships stored in the ontology but adds to memory overhead. As an example,
consider the network of biological pathways in the worm C. elegans available
from Reactome, which contains 7353 nodes and 11,706 edges.2 Opening this
worm network in NAViGaTOR BioPAX format takes 65 seconds and requires at
least 220 MB in memory resources, whereas opening the same network in tab-
delimited format (without extra annotations) takes only 5 seconds, and 95 MB
of memory is sufficient.

Nevertheless, the BioPAX format offers the most contextual information about
the network by annotating all the nodes and edges with their corresponding XML
information and displaying it in a collapsible tree view. The collapsible tree view
is flexible, allowing the user to navigate through the network and the desired
level of information about nodes and edges.

Combined, each of these file formats is suited for different uses. We recommend
loading in a lean file format (not including ancillary data) such as the tab-
delimited format to analyze the graph structure. Note that ancillary data may
be added to the graph later, by loading a tab-delimited file separately, or directly
from web sources (e.g., Gene Ontology [Ashburner et al. 00], I2D [Brown and
Jurisica 07], PSICQUIC [Orchard et al. 10], STRING [Jensen et al. 09], KEGG
[Kanehisa et al. 10], Reactome [Croft et al. 10], WikiPathways [Pico et al. 08],
Pathway Commons [Cerami et al. 11], iHOP [Hoffmann and Valencia 04]).

NAViGaTOR can select graph objects using XQuery [Boag et al. 02] to lever-
age some of the functionality of XML formats. XQuery goes beyond the simple
text and complex regular expression search functionality by defining a query and
functional programming language for search. NAViGaTOR takes full advantage
of the XML data structure with XQuery’s logic and nested expressions. XQuery
is defined by the XML Query working group of the W3C, and is implemented in
NAViGaTOR with the SAXON library.3

Considering complexity and diversity of data and tasks, there is no single best
layout, no single best file format or visualization tool: one size does not fit all. One
way to cope with these dynamics is to support multiple scenarios/workflows. We
continue to add new data formats, analysis algorithms, features, links to external
sources, and diverse tasks that require network visualization and analysis.

2Caenorhabditis elegans events in the BioPAX level 2 format. Available online at http://
www.reactome.org/download (accessed 4-January-2011).

3 Available from Saxonica Limited. “SAXON: The XSLT and XQuery Processor,” http://
saxon.sourceforge.net (accessed 17-December-2010) .
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2.2. Layouts and Visualization of Node and Edge Attributes

While diverse layouts can be used to visualize complex networks, rendering large
networks without overwhelming the user presents a challenge. With more and
more comprehensive annotation for nodes and edges, interactive visualization is
necessary for visual data mining. These challenges can be addressed by com-
bining automated and manual processes that manipulate the network and its
layout, showing the data at the right level of detail in a coherent manner us-
ing the available screen real estate resourcefully. Since many criteria influence
layout choices, knowing the goal of the network visualization is important in
enabling effective layout. Subcomponents of graphs with specific properties can
usually be placed together to represent functionally similar units. Layouts can
be created manually (often through some creative process) or algorithmically
(usually using graph-theoretic analysis of network structure to guide suitable
layout).

An effective workflow starts with an automated layout, followed by the use
of a powerful user interface [McGuffin and Jurisica 09, Viau et al. 10] to manu-
ally improve the network layout. Automatically identifying the largest connected
component, separating small subgraphs with similar features, locating highly
connected components, identifying central nodes and edges, hubs, and other dis-
tinctive graph structures play an important role in selecting what should be
highlighted and visible. In this way, some subgraphs may be rendered partially
transparent to reduce network complexity; edges and nodes can use different col-
ors or shapes based on these features, and so forth. Importantly, NAViGaTOR
can store individual subgraphs as sets, and basic set operations can further ben-
efit node and edge selection and visualization, such as complement, intersection,
and union.

Different layout techniques can be applied to subcomponents of the graph
depending on what type of information needs to be highlighted (e.g., listing node
neighbors, showing connections between groups of nodes, displaying a hierarchy
of data). Uses of these techniques are described in detail below.

2.2.1. Linear Layout. The linear layout enables the user to enumerate all interacting
partners for a node. All the interacting nodes can be displayed in a straight
line with the labels for the nodes on the side (Figures 1, 2). Note that the
linear layout used in Figure 1 is node-centered, focusing on two nodes and their
neighbors, whereas the layout in Figure 2 shows relationships between all the
nodes in the network. Additionally, it is sometimes helpful to lay out the edges
as branching from a single source (see the right side of Figure 1), or to curve
them as originating from a single source and diverging out to multiple targets
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Figure 1. Zachary’s karate club network showing friendship among members
[Zachary 77]. Friends of members 1 and 34 are highlighted, and all other con-
nections are faded out. Various node shapes are used to describe different sets of
friends. The downward-pointing triangles are friends of 1, the upward-pointing
triangles are friends of 34, and the diamond-shaped nodes are friends of both 1
and 34. Node size represents the number of friends each member has: the higher
the number of friends, the larger the node size. This was done by mapping the
node degrees to the node size, as shown in the legend. Additionally, the nodes in
the linear layouts for friends of 1 and for friends of 34 are automatically arranged
by the number of friends each member has in this social network; members with
the most connections are at the top, and those with the least at the bottom.
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Figure 2. A subnetwork of nodes up to two connections away from the drug
Trastuzumab (also known as Herceptin) obtained from the drug-target database
DrugBank [Wishart et al. 07, Wishart et al. 06] and chosen to illustrate the linear
layout with curved edges. If a drug (diamond) has an effect on a protein (circle),
then the two are connected by an edge in the network. The drug Trastuzumab
targets the ERBB2 protein (which is overexpressed in a subtype of breast cancer).
ERBB2 is also a member of the same receptor family as the EGFR protein, which
is targeted by many other drugs such as Gefitinib and Erlotinib in lung cancer.

(see the left side of Figure 1). Importantly, individual nodes can be arranged
according to any node attribute such as node name, gene ontology [Ashburner
et al. 00], biological function, level of protein abundance, fold change, or other
value (e.g., integer, double, text).

A linear layout can also be used to display interconnecting interactions between
a group of nodes by using curved edges (splines). If all the nodes are placed
on a straight line with straight edges connecting them, then individual edges
are overlapping and invisible. However, splines go around the nodes, making
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individual edges clearly visible (Figure 2). This layout also reduces the number
of edge crossings that we would find if the same network were displayed in a
circular layout.

2.2.2. Circular Layout. In a circular layout, all the nodes of interest are placed on the
circumference of a circle. Although it allows all the connections among relevant
nodes to be visible (Figure 3), the circular layout also results in many intersecting
edges, and depending on the number and placement of nodes on the circle and
its diameter, it may be difficult to properly show all node labels or names. If
the nodes are highly connected, or several closely placed nodes are connected
in multiple ways, it might be difficult to identify individual connections. The
number of edge crossings can be reduced by curving some of the edges outside
the circle, or by grouping nodes with a shared neighborhood.

2.2.3. Hierarchical Relationships. Many networks contain either explicit or implicit data
structure hierarchy. To visualize these, NAViGaTOR provides the Concentric
Circles layout. Starting from a predefined set of “root” nodes, the Concentric
Circles layout will place these in the innermost circle. Increasing layers of con-
centric circles with larger radii display the nodes that are one connection away
from the nodes in the previous layer. The nodes in the outermost layer are dis-
played uniformly on the circumference of the largest circle. Each inner circle has
its nodes placed at the center of all its neighbors in the outer circle (Figure 4).

NAViGaTOR can save arbitrary groups of nodes and edges in the graph as
subset objects. Subset objects can contain other subsets, thus making it possible
to store hierarchical data organization. Individual subsets can be collapsed in the
view to show a compact representation of the data. Any connections between the
nodes inside the collapsed subset and those outside are represented as a special
edge class: “Subset Edges.” However, subset edges can use the same diversity of
visual attributes as regular edges.

2.2.4. Visualization of Large Networks. Although simple layouts (such as linear, circular
and concentric circles) are often not effective on large networks due to screen-size
limitations, they may be beneficial on subgraphs of interest. To aid visualization
of large networks, NAViGaTOR uses automated layout algorithms that optimize
the position of the nodes and take advantage of multiple CPU cores for faster ren-
dering. These algorithms include GRIP (Graph Drawing with Intelligent Place-
ment) [Gajer and Kobourov 01] and the force-directed layout algorithm.

GRIP: NAViGaTOR uses GRIP to perform an initial layout of the graph, which
works effectively for small and medium-size networks with hundreds of nodes.
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Figure 4. Coauthorship network of scientists working on network theory and
experiments [Newman 06]. The three authors with the highest measure for be-
tweenness centrality in the network (displayed as square nodes), were chosen
as the “root” nodes for the Concentric Circles layout. Each consecutive circle
displays the authors who have collaborated with the authors from the previous
layer. Neighbors up to depth 5 were placed on circular layouts. The network is
weighted, with weights assigned as described in [Newman 06]. The edge weights
were mapped to edge thickness.

Although GRIP organizes larger networks more effectively than a random layout,
additional algorithmic or manual arrangement of the nodes may be necessary to
“detangle” highly interconnected cores of networks. A useful variant of the GRIP
layout separates the largest connected graph from the individual components of
the network to reduce overlap (Figure 5).

Force-directed layout: In addition to the GRIP algorithm, which statically
computes the positions of the nodes of a given network, NAViGaTOR also
provides a dynamic force-directed layout algorithm. The force-directed layout



Djebbari et al.: NAViGaTOR: Large Scalable and Interactive Navigation and Analysis of Large Graphs 325

Figure 5. DrugBank network showing 4369 drugs and their 4534 target proteins
[Wishart et al. 07, Wishart et al. 06]. If a drug has an effect on a protein, then the
two are connected by an edge in the network. There are 11,950 such edges in this
network. The layout is performed by the GRIP algorithm with individual com-
ponents placed separately. As in Figure 2, drugs are rendered as gray diamonds,
while proteins are displayed as black circles.

algorithm models a physical system. Nodes are treated as electrons that repel
each other, and edges act as springs, moving the nodes at their endpoints closer
together. The system iteratively places nodes in positions that bring the system
closer to an equilibrium state. Several parameters, such as the spring rest length,
can be modified to obtain different displays.

The force-directed layout algorithm is most effective when automated node
placement is aided by fixing and organizing nodes of interest. The dynamic algo-
rithm automatically adjusts the positions of the surrounding unfixed nodes, and
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Figure 6. Application of force-directed layout algorithm to a subset of the Drug-
Bank network. Seven drugs of interest (NADH, ethylene glycol, nicotinamide-
adenine-dinucleotide, alpha-D-mannose, heme, adenosine-5′-diphosphate, acetate
ion) were fixed in position and placed in a circular layout. The force-directed lay-
out places their immediate neighboring targets of degree 1 in circles around the
nodes. Also notice the straight dashed lines connecting pairs of drugs that have
been fixed in position. These are interactions with those drug targets that are
interacting with two or more of the drugs of interest. The common neighbors get
clustered together in the middle. Node size represents the value of the all-pairs
shortest-path traversal count for each node.

this process may be repeated until the visualization is aesthetically satisfying
and helps to convey the intended message.

Hence the algorithm helps users by taking some manual layout effort away
from them, automatically bringing them closer to a desired layout (Figure 6).
As described above, selecting nodes of interest can be done by taking advantage
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of graph structure or annotation, using graph-theoretic algorithms, simple set
operations, query, or XQuery.

Most workflows seem to benefit from the default setting in NAViGaTOR: The
GRIP layout is applied first, followed by the dynamic force-directed layout, to
continuously render the graph while the user is free to manipulate subgraphs of
interest by combining query selection, algorithms, filters, and manual placement.

2.2.5. Visualizing Annotations. In addition to purely graph-structure-based visual-
ization, it is useful to visualize different attributes of nodes and edges. In
NAViGaTOR, any annotations associated with nodes and edges can be mapped
to diverse visual properties. For example, node degree can be mapped to node size
(Figure 1). Other node attributes such as gene-expression values can be mapped
to node size, shape, color, highlight, or transparency. Similarly, edge weights
or annotation can be mapped to edge thickness, color, style, or transparency
(Figure 9). Edge weights can also be mapped to edge lengths. However, this
requires the force-directed layout option to be active. The edge lengths are pro-
vided as a parameter to the layout algorithm, and it takes that into consideration
as it optimally places the nodes. Additionally, the user has the option to perform
an inverse mapping, such that higher weights map to shorter edge lengths.
This is useful in cases in which a higher edge weight corresponds to a higher
connectivity measure. With the inverse mapping option, the edges that have a
higher measure of traffic flow will have their neighboring nodes closer together,
indicating a higher level of connectivity or “closeness” between the nodes.

2.2.6. Fine-Tuning Placement of Graph Subcomponents. In addition to automated layouts,
NAViGaTOR’s flexible user interface [McGuffin and Jurisica 09, Viau et al. 10]
enables users to manually manipulate nodes and edges. This can help users to
fine-tune the network layout by selecting various network components and move,
rotate, scale, and annotate them. NAViGaTOR also implements hierarchical
network organization by collapsing subgraphs (Figure 7). Users may zoom in
and out of the graph view and also bend edges between nodes.

The color, size/length, shape/style, and transparency of both nodes and edges
can be modified either manually or automatically using their attributes. Edges
may be straight lines or quadratic Bézier curves [Farin and Hansford 00] of
various lengths, widths, and dashed styles.

When one is visualizing large networks, it is often useful to focus on specific
subcomponents by rendering the remainder of the graph semitransparent. Using
transparency is preferred over the deletion of the remainder of the network, since
the graph retains the overall network context (and thus supports, for example,
querying) while reducing visual complexity.
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Figure 7. Graph A shows the purine biosynthesis pathway in the A. thaliana
organism as curated by Reactome [Croft et al. 10]. Diamond nodes represent bio-
chemical reactions, and triangular nodes are catalysts that assist the biochemical
reactions. Each biochemical reaction involves several physical entities such as pro-
teins, genes, RNA, DNA, and small molecules, which are represented by circular
nodes in these figures. Reactome also provides information describing biologi-
cal complexes, which are built up from physical entities or other complexes. In
Graph B, the biological complex ribonucleotide reductase (as defined by Reac-
tome’s curation) has been collapsed into a single square node with a plus sign.
The dashed edges are automatically generated by NAViGaTOR and describe
interactions from the components of the collapsed complex to their respective
interactors. The resulting visualization shows a higher-level organization of the
pathway while maintaining the hierarchical structure of the biological complex.

Although there are some recurrent concepts, each network visualization usu-
ally needs some level of customization. Thus, trial and error is often involved
in finding the most informative and aesthetically pleasing layout for a given
network.

2.3. Manipulating Networks

NAViGaTOR’s workspace can load multiple networks simultaneously. Users can
define and bookmark subgraphs of interest to be recalled later as subset ob-
jects. These subsets can be changed by adding or subtracting graph objects. Set
operations such as union, intersection, and complement can also be performed
on the subsets. The results of set operations are functionally identical to the
subsets passed to the operations such that they may in turn be modified with
any number or sequence of operations. This feature promotes a versatile environ-
ment in which the user can define the most appropriate workflow for the required
analysis.

When two graphs share unique node identifiers, these graphs may be combined
with cut, copy, and paste functionality to create new graphs. Pasted subgraphs
can be book marked as subsets, and are thus recognizable in their new setting and
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may also be manipulated by set operations. Importing ancillary data associated
with graph objects can also enrich individual graphs. For example, NAViGaTOR
can be used to visually query other online databases such as I2D [Brown and
Jurisica 07], Reactome [Croft et al. 10], and PubMed.

Due to real-world constraints on time and resources, an experiment may con-
cern a only small subgraph on a larger network. For instance, there may be
only a subset of genes with associated experimental data (e.g., expression level,
mutation). Similarly, only a subgraph of a social network may contain social cat-
egories (e.g., gender, age). These graph objects can then be placed in the context
of another graph, of which the experimental objects are a subset. In the context
of biological networks, data from other experiments can be imported from or
integrated with much larger curated databases (IMEx Consortium,4 Reactome,
I2D, etc).

In such cases, NAViGaTOR plug-ins play an important role to import, ex-
tend, annotate, and analyze networks. These plug-ins integrate external web
services and provide access to the latest data through common workflows that
bridge differences in representation and retrieval. Networks can therefore be eas-
ily combined and analyzed, enabling users to work in an integrated data space
that would not otherwise be available.

For example, interpretation of a list of genes and associated expression lev-
els remains a daunting task. Loaded into NAViGaTOR, the interactions for
these genes could be found through the I2D database using the I2D plug-in,
providing context for the genes of interest. The network can be further anno-
tated by PubMed references using the iHOP [Hoffmann and Valencia 04] plug-
in, or with pathways using KEGG [Kanehisa et al. 10], WikiPathways [Pico et
al. 08], cPath [Cerami et al. 06], or Reactome plug-ins, or with other interactions
from the PSICQUIC web service [Orchard et al. 10] or gene associations from
STRING [Jensen et al. 09]. Alternatively, interaction data could be loaded into
the workspace directly from any of the databases listed above (or indirectly from
any database that supports export into standard XML, GML, or tab-delimited
files), and the experimental genes could be pasted into the existing network.

Plug-ins also assist with the interpretation of networks when there are sig-
nificant representational differences. For example, in a biology context, some
databases such as KEGG emphasize schematic summarization, whereas others,
such as Reactome, emphasize biochemical fidelity, resulting in divergent models
of the same biological processes. Through the PathSource plug-in, these models
can be normalized into a common graph form, more suitable for extension and

4 Available online at http://www.imexconsortium.org/ (accessed 17-December-2010).
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analysis that preserves as much of the variable data as possible in node and edge
annotations. These highly complex biomolecular networks can then be easily en-
hanced using the LitSearch plug-in, which queries selected proteins using more
specialized web services (e.g., STRING, iHOP), to retrieve known drug inter-
actions or gene-expression data. This data aggregation can help to elucidate or
reinforce relationships between biological entities, strengthen support from the
published literature, poll for consensus, or highlight areas for further analysis.
Such an integrative approach is particularly important in biology, where indi-
vidual data sets are often sparse, incomplete, noisy, and distributed across many
databases in diverse formats.

Common workflows with online connectivity offer users the immediacy of live
interaction with the current state of knowledge without having to contend with
extraneous technicalities. This underlines the importance of client scalability,
since vastly more data can potentially be reached, encouraging the manipulation
of larger and more complex networks built from diverse sources. Computationally
intensive analyses of these networks can also be outsourced to web services,
freeing the user from local resource constraints.

However, network visualization alone is often not sufficient to generate insights
from data. Fortunately, in addition to ancillary data import, a number of graph
analysis approaches can be brought to bear on this problem.

3. Analyzing Graph Structure with NAViGaTOR

3.1. Introduction

Graph representation offers a simple yet powerful method of modeling complex
systems, because the structure of a network is often deeply related to its func-
tion. Many real-world systems can effectively be modeled as networks, including
routing in the World Wide Web [Aloul and Rawi 06], collaborations of scientists
[Palla et al. 05], metabolic networks of genes [Zelezniak et al. 10], neural con-
nections of the worm C. elegans [Watts and Strogatz 98], electrical power grids
[Watts and Strogatz 98], food webs of predators and prey [Milo et al. 02], human
disease transmission [May and Lloyd 01], telephone calls [Wang et al. 09]—the
list goes on.

Over the past several decades, many powerful methods for analyzing and char-
acterizing these graphs as mathematical objects have emerged from a wide range
of applied and theoretical disciplines. Through a graph-theoretic lens, new con-
nections have been revealed between seemingly disparate natural systems. For
instance, graphs of the power grid of the western United States and the neu-
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ral network of C. elegans have been shown to share the “small-world property”
[Watts and Strogatz 98]. Briefly, this means that they have a low average shortest
path length, and that the neighbors of a vertex tend to be highly interconnected
among themselves (they have a high clustering coefficient). Similarly, other graph
concepts have been proposed that draw clear distinctions between different kinds
of graphs, such as motifs. For instance, the motifs particular to the World Wide
Web are very different from those typical of food webs [Milo et al. 02]. The liter-
ature on graph analysis is rich, vast, and still growing at a fast pace; basic and
advanced concepts have been extensively reviewed elsewhere; see, for example,
[Newman 03, Strogatz 01, Barabási and Oltvai 04, Borgatti et al. 09].

3.1.1. Models of Real-World Networks Are Limited by Data Availability. While graph analysis
has proven effective in many practical applications, it is important to note that
incomplete or noisy data can limit our ability to make final conclusions about
the true topology of real-world graphs. In fact, putting undue trust in graph
models created from limited data that suffer from selection bias is a concern.
The most prevalent models for the Internet and for protein–protein interaction
(PPI) networks have been scale-free graphs (where the degree distribution fol-
lows a power law). Much research has been undertaken in this area [Rzhetsky
and Gomez 01, Yook et al. 02, Lukashin et al. 03, Pržulj et al. 04a, Stumpf and
Wiuf 05]. The following quotation from [Karagiannis et al. 04] on the chang-
ing structure of the Internet highlights the key challenge of modeling empirical
graphs: “As the Internet increases in size and the technologies connected to it
change, we must constantly monitor and re-evaluate our assumptions to ensure
that our conceptual models correctly represent reality.”

3.1.2. Basic Definitions. For the purpose of this section, G = (V,E) is a graph with
vertices V and undirected edges E [West 01]. Furthermore, |V | denotes the num-
ber of vertices in G, and |E| the number of edges, while V (G) denotes the set
of vertices in G, and E(G) denotes the set of edges in G. An induced subgraph
H of G is a graph such that V (H) ⊆ V (G), E(H) ⊆ E(G), and H has the same
assignment of vertices to edges as in G. All vertex pairs vi , vj ∈ V , are associated
with an edge eij ∈ E. Let us assume that eij = 1 if the vertices are connected,
and eij = 0 otherwise.

Paths: A path is a sequence of consecutive edges (or vertices) in a graph, and
path length is the number of edges in the sequence. There are commonly multi-
ple paths between two vertices, and paths with the minimum length are called
shortest paths. The length of a shortest path is called the distance between two
nodes.



332 Internet Mathematics

Figure 8. A network of character co-appearances in Victor Hugo’s novel
Les Miserables [Knuth 93]; see SNetwork of coappearances of characters
in Victor Hugo’s novel Les Miserables, available online at http://www-
personal.umich.edu/˜mejn/netdata/ (accessed 22-December-2010). Nodes repre-
sent characters and are linked together if they appear in the same chapter. Inter-
estingly, some of the eight characters identified as articulation points (diamonds)
such as Valjean and Gavroche correspond to major characters in the plot who
die by the end of the novel.
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Connected components: A connected component is a subgraph in which ev-
ery pair of vertices are connected by a path. Maximal connected subgraphs are
the components of a graph [West 01].

3.2. Topological Measures of Vertex and Subgraph Characteristics

3.2.1. Articulation Points. An articulation point is a vertex whose removal discon-
nects the graph. Articulation points are often critically important in networks
(Figure 8). For example, in PPI networks they have been associated with pro-
teins essential for survival [Pržulj et al. 04b]. The Internet can be viewed as a
graph whose vertices represent hubs, switches, or routers and edges represent
lines of communication [Kim et al. 08]. Identifying articulation points may sug-
gest changes to the network to improve its stability and robustness, such as
decreasing their degree.

3.2.2. Measures of Vertex Centrality. Measuring vertex centrality is a crucial analysis
step for identifying vertices that play important roles in a graph. There are many
ways of defining centrality; two of the most useful are degree and betweenness
centrality. For example, in PPI networks, proteins with high degree are much
more likely to be essential to cellular function [Jeong et al. 01], and in a sci-
entific collaboration graph (where vertices are authors and edges indicate that
the authors have published a paper together), authors with high betweenness
centrality play crucial roles: removing a few of them may break the graph apart
into disconnected regions [Holme et al. 02].

Degree: The degree Deg of a vertex v is defined as the number of neighbors of a
node v: Degv =

∑
i evi , for i ∈ V (G).

Betweenness centrality: While degree takes into account only the local connec-
tivity of a vertex, betweenness centrality, BC, uses global information: it depends
on the connectivity of the whole graph. The betweenness centrality of v is cal-
culated as the number of shortest paths between pairs of nodes in graph G that
pass through v:

BCv =
∑
i �=j

sij (v)
sij

,

where sij is the number of shortest paths between vertices i and j and sij (v) is
the number of such paths that pass through v.

3.2.3. Other Topological Measures. Several other topological measures that are functions
of graph connectivity have proven important in many applications. For example,
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the C. elegans neural network is a “small-world” graph that is characterized by a
high average clustering coefficient and low characteristic path length [Watts and
Strogatz 98]. NAViGaTOR can calculate the clustering coefficient of vertices as
well as the density and diameter of groups of vertices.

Clustering coefficient: The clustering coefficient CC of a vertex v reflects the
extent to which its neighbors are interconnected. It is calculated as the number of
existing connections between neighbors of v in the graph G = (V,E) divided by
the total possible number of such connections. Thus, if we define the neighbors
of v as Nv = {w ∈ V : evw = 1}, then the clustering coefficient of v is given by

CCv =
∑

i,j∈Nv

2eij

|Nv |(|Nv | − 1)
,

where eij is the number of edges connecting the Nv neighbors of node v to each
other.

Edge density: The edge density Den of a group of vertices measures how close
that group is to being a clique. For a group p of k vertices in a graph G = (V,E),

Denp =
∑
i,j∈p

2eij

k(k − 1)
.

Diameter: The diameter Dia of a connected component (Cv ,Ce) = C ⊂ G =
(V,E) is defined as the longest distance between any pair of vertices in the
component:

DiaC = max{d(i, j)} ∀i, j ∈ Cv ,

where d(i, j) is the length of the shortest path between vertices i and j. The
diameter provides an upper bound on the number of connections it takes to
traverse a graph.

3.3. Identifying Graph Clusters

Many real-world graphs have an underlying community structure: They con-
tain groups of vertices that are highly interconnected with one another and only
sparsely connected to the rest of the graph. These communities are often mean-
ingful, e.g., in protein networks, graph communities can be used to predict new
protein complexes [King et al. 04]. There are many methods for partitioning
a graph into clusters; NAViGaTOR supports four different network clustering
methods. Three of these (cliques, RNSC, and MCL) are implemented as a plug-
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in to the NeAT toolbox [Brohee et al. 08], and one (k-clique communities) as a
plug-in to CFinder [Adamcsek et al. 06].

Cliques: A clique is the strictest possible definition of a graph cluster. In a k-
clique, k vertices are fully connected, i.e., there is an edge between every pair of
distinct vertices. Cliques have an edge density of 1.

Restricted neighborhood search clustering (RNSC): Restricted neigh-
borhood search clustering partitions a graph into disjoint sets of densely con-
nected vertices using cost-based clustering [King et al. 11, King et al. 04]. RNSC
starts with a random assignment of vertices to clusters, and then at every itera-
tion moves one vertex to a different cluster to lower a cost function that depends
on the number of intracluster and intercluster edges.5

Markov clustering (MCL): Markov clustering partitions a graph into dis-
joint sets using flow simulation [Van Dongen 98, Pereira-Leal et al. 04]. It uses
stochastic matrices to simulate random walks on the graph and identify densely
connected clusters of vertices. Of the four algorithms covered here, MCL is the
only one that can use graph edge weights.

k-clique communities: Communities are constructed from chains of cliques
that have many vertices in common [Palla et al. 05]. Specifically, a k-clique
community is a union of all the k-cliques that are pairwise adjacent, in the
sense that every k-clique in the community is reachable from every other one by
traveling through a series of k-cliques that each share k − 1 vertices. In contrast
to many other definitions of graph clusters, two k-communities may overlap, i.e.,
some vertices may be assigned to more than one k-community.

Overlapping communities can be found in diverse real-world networks: In social
networks, individuals may belong to several groups (e.g., clubs, families); in
protein networks, a protein may participate in multiple complexes; and in the
World Wide Web, a document may be classified under multiple subject headings
[Palla et al. 09].

3.4. Motifs and Graphlets

Motifs and graphlets characterize the local structure of a graph. Motifs are small
subgraphs that occur significantly more often than at random. They may corre-
spond to the key functional units in a graph [Shen-Orr 02, Milo et al. 02, Yeger-

5 See (http://www.cs.utoronto.ca/∼juris/data/rnsc/).
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Lotem et al. 04]. For example, in information-processing networks, motifs may
represent small computational circuits [Shen-Orr 02]. Different motifs character-
ize different types of graphs; for example, the motifs found in a graph of the
World Wide Web are different from those found in a graph of a food web (where
vertices represent species and edges connect predators to prey) [Milo et al. 02].

Graphlets are subgraphs that differ from motifs in two ways: Their frequencies
are not necessarily higher than in random graphs and they must be induced
subgraphs (i.e., they must contain all edges that connected their vertices in the
full graph) [Pržulj et al. 06]. Graphlets have been used to develop more realistic
models of biological networks [Pržulj et al. 04a]. They have also been effective for
predicting protein function [Milenkovic and Pržulj 08], identifying cancer genes
[Milenkovic 10], and discovering biological pathways [Guerrero et al. 08].

Several techniques are available for locating motifs and other important small
subgraphs [Geraci et al. 2011, Wernicke and Rasche 06]. NAViGaTOR supports
motif detection through a plug-in to the popular FANMOD program [Wernicke
and Rasche 06]. Given a graph G in NAViGaTOR, the FANMOD plug-in con-
verts G into the FANMOD format and generates an ID mapping file used to
convert the detected motifs in the FANMOD format back to the notation used
by G. An enumeration of motifs is obtained through FANMOD. Each motif m

is imported back to NAViGaTOR as a subset of V .

3.5. Shortest Paths

The shortest path between two vertices is the shortest sequence of consecutive
edges that must be traversed to reach one vertex from the other. More formally, a
path can be defined as a set of vertices that can be ordered such that two vertices
are adjacent if and only if they are consecutive in the ordering [West 01]. Identify-
ing shortest paths is a key analysis task in many types of networks including the
Internet and PPI networks. In PPI networks, identification of shortest paths can
help predict disease genes, since such genes are often close together in interaction
networks, and consequently, novel disease genes can be prioritized by determining
their shortest paths to previously known disease genes [Franke et al. 06].

3.5.1. All Shortest Paths between Vertices. The ability to find all shortest paths between
two vertices u and v is useful in different domains. For example, in the domain
of Interior Gateway Protocols (IGPs), a highly practical routing option is equal-
cost multipath routing, whereby incoming traffic is distributed evenly onto all
edges that belong to the shortest paths to the final location [Altin et al. 09].
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NAViGaTOR can retrieve all shortest paths between two vertices u and v, i.e.,
all paths that contain the minimum number of edges. More information about
this function can be obtained from NAViGaTOR’s user manual.6

3.5.2. Single-Source Shortest Path. Dijkstra’s algorithm is often used to compute single-
source shortest paths [West 01]. For a graph G with weighted edges, given a
source vertex s, the algorithm returns shortest paths from s to all other vertices in
V (which includes the shortest path from a given source vertex s to a destination
vertex v). This shortest-path algorithm is widely used in many routing problems.
A well-known interior gateway protocol, OSPF (Open Shortest Path First) uses
this algorithm [Coltun et al. 08].

NAViGaTOR implements Dijkstra’s single-source shortest-path algorithm. If
there exists more than one shortest path between u and v, the user can specify
a weight function to select the preferred shortest path. The selection criteria for
the preferred shortest path are as follows.

The length of the shortest path or distance between u and v is denoted by
d(u, v), and the weight for edge i is denoted by wi . Without loss of generality,
let suv denote the number of shortest paths between u and v. The total weight
for a given shortest path is defined as

Tp =
d(u,v )∑
i=1

wi.

The selection criterion among all shortest paths is

max(Tpj ), j ∈ {1, . . . , suv}, or min(Tpj ), j ∈ {1, . . . , suv}.

3.5.3. All-Pairs Shortest Paths between Subsets of Vertices. The Floyd–Warshall algorithm
computes all-pairs shortest paths (APSP) [Cormen et al. 90]. NAViGaTOR im-
plements this algorithm to retrieve all shortest paths between any two given
subsets. Let X and Y be subsets of V , and for vertices x ∈ X and y ∈ Y , let
Pxy denote all shortest paths between them. NAViGaTOR will return all short-
est paths {Pxy | x ∈ X ∧ y ∈ Y }. More information about this function can be
obtained from NAViGaTOR’s user manual.

3.5.4. All-Pairs Shortest-Path-Traversal Counter. In NAViGaTOR, shortest paths between
all pairs of vertices {u, v ∈ V } are calculated using the Floyd–Warshall algorithm
[Cormen et al. 90]. If more than one shortest path between u and v exists, ties are
broken arbitrarily. Let SPi denote the set of vertices and SPEi the set of edges

6 Available online at http://ophid.utoronto.ca/navigator/.
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associated with the shortest path between the ith pair of vertices u, v ∈ V , where
i ∈ {1, . . . ,

(|V |
2

)}. We define the traversal information TN(u) for each vertex
u ∈ V , and TE(e) for each edge e ∈ E as follows:

TN(u) =
(|V |

2 )∑
i=1

{
1 if u ∈ SPi ,

0 otherwise,

and

TE(e) =
(|V |

2 )∑
i=1

{
1 if e ∈ SPEi ,

0 otherwise.

The all-pairs shortest-path-traversal counter can be used in many areas. For
example, in routing, an edge e with a high traversal count may get a great deal
of traffic; one can consider alternative routes to avoid congestion through e. In
a network showing the functional connectivity between brain anatomical regions
in macaque visual cortex [Rubinov and Sporns 10, Felleman and Van Essen 91],
the APSP traversal count can be used to highlight the importance of visual area
V4 (Figure 9).

3.6. Random Subgraph Sampling

It is common to compare a feature associated with a particular subgraph—for
example, edge density—to the same feature on a random subgraph. However,
there are many ways to generate a random graph, and the method highly influ-
ences these comparisons. NAViGaTOR can randomly generate a background set
of comparable subgraphs by sampling from the true graph. Given the number n

of seed vertices, the subgraph depth d, and the background graph G = (V,E),
NAViGaTOR will generate subgraphs Si ⊂ G of the background graph by ran-
domly choosing n vertices from V and then extracting them and their neighbors
out to depth d.

Additionally, given sets of vertices U1 , U2 , . . . , Un , where Ui ⊂ V , NAViGaTOR
provides enrichment analysis by counting the number of vertices in each random
subgraph that are from any of the sets Ui . This determines whether a particular
subgraph is especially enriched in any particular vertex sets.

Note that random graph sampling is unrelated to a variety of random graph
models, including the Erdős–Albert–Rényi (ER) model [Erdős and Rényi 59],
the Barabási and Albert network model [Barabási and Albert 99], the geometric
random network model [Pržulj et al. 04a], and the hierarchical network model
[Ravasz et al. 02].



Djebbari et al.: NAViGaTOR: Large Scalable and Interactive Navigation and Analysis of Large Graphs 339

Figure 9. Functional connectivity between anatomical areas of macaque visual
cortex. Labels are shown for the nodes corresponding to primary visual cortex
(V1) and cortical areas V2, V3, V3a, V4, V4t, and V5/MT. Node size is propor-
tional to node APSP traversal count, and edge shade and width are proportional
to edge APSP traversal count.

We describe detailed steps for conducting a number of analyses in NAViGa-
TOR such as the computation of articulation points, betweenness centrality,
clustering coefficient, edge density, diameter, single-source shortest paths, and
all-pairs shortest paths in online tutorials.7 We also describe the format of the
results of each analysis and how to visualize them in the network.

4. Network Export

NAViGaTOR supports saving the network in diverse network file formats—
GML, PSI-MI XML, BioPAX, Pajek, and tab-delimited—and in multiple image

7 See http://ophid.utoronto.ca/navigator/sample data/supplemental materials/.
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file formats—BMP, JPG, TIFF, PDF, and SVG. Among these, the PDF and
SVG vector format images scale gracefully, and are ideal for publishing. How-
ever, the images produced in SVG for networks with tens of thousands of nodes
and edges are increasingly time-consuming and difficult to open in popular vector
graphic editing applications such as Adobe Illustrator and Inkscape. Although
NAViGaTOR does not optimize output to the SVG format for these applica-
tions, it can render large networks with tens of thousands of objects in a few
seconds as well as provide interactive functionality, while these applications re-
quire minutes to render the same networks statically. By harnessing the power of
video cards commonly available in modern computers, NAViGaTOR makes in-
teractive manipulations of large graphs feasible. Contrast this to vector-graphics
editing applications that are sometimes not even able to render the same graph
statically that NAViGaTOR can render dynamically.

Individual file formats consume storage space that depends not only on the
information they represent but also on how they store it. Although XML provides
a flexible standard characterized by openness and sharing of features, its level
of detail can sometimes hinder scalability. NAViGaTOR is flexible in that it
supports a number of file formats for data import and export, and thus it can
integrate diverse data and interface with other tools easily.

5. Comparison with Other Network Visualization Software

A number of graph visualization and manipulation applications exist for various
platforms. Potential users of these applications will make a decision based on
factors such as the application’s availability for the user’s computing platform,
its feature set, and its user interface. Some applications are more suitable for par-
ticular domains (social networks, biological network analysis, link analysis, etc.),
whereas others are more generic. Here is a brief comparison of some of NAVi-
GaTOR’s capabilities with those of Cytoscape (a widely adopted application in
the biological community) [Shannon et al. 03] and of Gephi (which advertises
itself as “Photoshop for graphs”) [Bastian et al. 09]. All three applications allow
general-purpose network visualization, are available free of charge, and can run
on multiple platforms.

While all three graph-visualization tools provide diverse options for network
layouts, they differ in flexibility and speed of how these layouts can be selected
and optimized for a given graph. NAViGaTOR’s combination of regular, floating,
and markup menus [McGuffin and Jurisica 09] provides faster access to relevant
tools to select, move, rotate, scale, and lay out subgraphs and curve edges than
either Gephi or Cytoscape.
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Furthermore, NAViGaTOR has been benchmarked against other graphing
applications in the biological domain. In particular, NAViGaTOR consistently
loaded networks and rendered graph layouts in significantly shorter time and with
a smaller memory footprint than Cytoscape (detailed comparison is available in
supplemental material in [Brown et al. 09]). Additional review and comparison
of many graph visualization and analysis tools in the biological domain can be
found elsewhere [Gehlenborg et al. 10, Suderman and Hallett 07].

Each application contributes unique features, and may thus be better at dif-
ferent tasks. NAViGaTOR specializes in visual exploration of large-scale graphs
(millions of nodes and edges) and integration with high-dimensional data by
providing intuitive tools for these purposes. Moreover, all major applications
support data exchange using accepted standard file formats. Further integration
via sharable plug-ins is planned in the future as well.

6. Conclusion

Tools and systems should not limit users during data analysis and visualiza-
tion; rather, they should empower them. We have designed NAViGaTOR to em-
power scientists conducting integrative computational biology analyses. First,
network data may be imported in NAViGaTOR from distributed and heteroge-
neous sources using a variety of file formats. Second, NAViGaTOR is adaptable
with an effective user interface, several layouts, and graph-analysis methods.
Third, NAViGaTOR’s support for multiple export formats and plug-in architec-
ture make it compatible with many other tools and data repositories. Finally,
NAViGaTOR is interactive, efficient, and scalable. NAViGaTOR provides the
complete workflow required to perform network visualization and analysis. Pool-
ing resources (with core services as well as many plug-ins) supports visual data
mining in an intuitive tool. NAViGaTOR also scales well to large real-world data
sets with hundreds of thousands of nodes and edges through optimized internal
data structures. We are currently exploring better integration with Cytoscape
[Shannon et al. 03] (please see [Brown et al. 09] for a detailed comparison between
them). We are also continuing to provide user-driven options to facilitate com-
bined network analysis and visualization. The NAViGaTOR software is freely
available for academic use at http://ophid.utoronto.ca/navigator.
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[Pržulj et al. 04a] N. Pržulj, D. G. Corneil, and I. Jurisica. “Modeling Interactome:
Scale-Free or Geometric?” Bioinformatics 20:18 (2004), 3508–3515 .
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