
�

�

“imvol5” — 2010/1/6 — 14:39 — page 383 — #1
�

�

�

�

�

�

Internet Mathematics Vol. 5, No. 4: 383–394

Core Stability
of Vertex Cover Games
Qizhi Fang, Liang Kong, and Jia Zhao

Abstract. In this paper, we focus on the core stability of vertex cover games, which arise
from vertex cover problems on graphs. Based on duality theory of linear programming,
we prove that a balanced vertex cover game has a stable core if and only if every edge
belongs to a maximum matching in the underlying graph. We also prove that for a
totally balanced vertex cover game, the core largeness, extendability, and exactness are
all equivalent, which implies core stability. Furthermore, we show that core stability
and the three related properties can be determined efficiently.

1. Introduction

A transferable cooperative game Γ = (N, γ) consists of a set of players N =
{1, 2, . . . , n} and a characteristic function γ : 2N → R, where for each subset
S ⊆ N of players, γ(S) represents the revenue or cost achieved by the players
in S without assistance of other players. One of the scopes of cooperative game
theory is to study how to distribute the total revenue or cost γ(N) among the
participants in a fair way. Different philosophies result in different solution
concepts, such as core, Shapley value, nucleolus, and stable set. The concept of
a stable set was first introduced in [von Neumann and Morgenstern 44], in which
the authors claimed that it is very useful in the analysis of many bargaining
situations.

While the core and the stable set are different, it was shown in [Shapley 71]
that for convex games, the core is the unique stable set. This result motivated
researchers to study the following problem: when do the core and the stable set
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coincide, that is, when is the core stable? However, it is difficult to investigate
the existence and properties of the stable set because of the complexity of its
definition. Recently, it was shown in [Jain and Vohra 06] that determining the
existence of a stable set and checking the core stability for general cooperative
games is decidable. However, it is unlikely that the algorithms presented by Jain
and Vohra will be efficient. As far as the core stability for concrete cooperative
game model is concerned, only a few results have been obtained. The core
stability for assignment games is studied in [Solymosi and Raghavan 01], and it
is studied in [Bietenhader and Okamoto 04] for minimum coloring games defined
on perfect graphs.

In this paper, we focus on core stability of vertex cover games introduced
in [Deng et al. 99], which arise from cost allocation problems related to vertex
covers on graphs. We show that a vertex cover game has a stable core if and only
if every edge belongs to a maximum matching in the corresponding graph. We
also discuss three related properties: core largeness, extendability, and exactness
of the game. We prove that all these properties are equivalent for vertex cover
games defined on bipartite graphs, and furthermore, are equivalent to a graph-
theoretic property that every matching is contained in a maximum matching.
We also show how to test this equivalent condition in polynomial time.

2. Definitions and Preliminaries

We begin with some concepts and notions from graph theory and cooperative
game theory.

2.1. Graphs

Let G = (V, E) be an undirected graph with vertex set V and edge set E. The
neighborhood NG(v) of vertex v ∈ V is the set of vertices adjacent to v in G. For
v ∈ V , denote by E(v) the set of edges incident to v, and by G \ v the subgraph
obtained from G by deleting the vertex v together with its incident edges.

A subset K ⊆ V is called a vertex cover of G if each edge of G has at least one
end in K. A vertex cover is minimum if it has the minimum cardinality among
all the vertex covers of G. The vertex cover number, denoted by τ(G), is defined
as the cardinality of any minimum vertex cover of G.

A subset M ⊆ E is called a matching of G if no two edges in M have an
end in common. A matching of G is called maximal if adding any other edge to
it makes it no longer a matching, and called maximum if it has the maximum
cardinality among all the matchings. The matching number, denoted by ν(G),
equals the cardinality of any maximum matching of G.
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In general, ν(G) ≤ τ(G), and equality does not hold. However, if G is a
bipartite graph, we do have

ν(G) = τ(G).

This result is called König’s theorem [Reinhard 00].

2.2. Core Stability

Throughout this paper, all the games concerned are cost games, that is, the val-
ues of the characteristic function specify the costs of all coalitions. Let Γ = (N, γ)
be a cooperative game. A vector x = (x1, x2, . . . , xn) is called an imputation if∑

i∈N xi = γ(N) and for all i ∈ N , we have xi ≤ γ({i}). The set of imputations
is denoted by I(Γ). The core is defined as

C(Γ) = {x ∈ Rn : x(N) = γ(N) and x(S) ≤ γ(S), for allS ⊆ N},
where x(S) =

∑
i∈S xi. The game Γ = (N, v) is balanced if C(Γ) is nonempty,

and totally balanced if every subgame (i.e., the game obtained by restricting the
player set to a coalition and the characteristic function to the power set of that
coalition) is balanced.

The concept of stability goes back to [von Neumann and Morgenstern 44].
Given two imputations x, y ∈ I(Γ), we say that x dominates y if there is a
nonempty coalition S such that x(S) ≥ γ(S) and for all i ∈ S, xi < yi. A
set F ⊆ I(Γ) is stable if any two imputations in F do not dominate each other
and any imputation not in F can be dominated by an imputation in F . Since
the core allocations do not dominate each other, to say that the core is stable
simply means that any imputation not in the core can be dominated by a core
imputation. Formally, the core of a balanced game Γ is stable if for every y ∈
I(Γ) \C(Γ), there exist an x ∈ C(Γ) and a nonempty coalition S ⊂ N such that
x(S) = γ(S) and xi < yi for all i ∈ S.

2.3. Vertex Cover Game

Now let us give the definition of vertex cover games. Given an undirected graph
G = (V, E), the corresponding vertex cover game ΓG = (E, γ) is defined as
follows:

1. The player set is E = {e1, e2, . . . , en}.
2. For each coalition S ⊆ E, γ(S) is the cardinality of a minimum vertex

cover in the induced subgraph G[S] = (V, S).

Vertex cover games fall into the scope of the class of combinatorial cooperative
games studied in [Deng et al. 99]. With the duality theory of linear programming,
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its authors presented a necessary and sufficient condition for a vertex cover game
to be balanced.

Theorem 2.1. [Deng et al. 99] Given a graph G = (V, E), the vertex cover game defined
on G is balanced if and only if ν(G) = τ(G). In such case, an imputation is in
the core if and only if it is a convex combination of the indicator vectors of
maximum matchings of G.

Since ν(G) = τ(G) for a bipartite graph G, it follows from Theorem 2.1 that
the corresponding vertex cover game is balanced. Furthermore, [Deng et al. 00]
gives a necessary and sufficient condition for a vertex cover game to be totally
balanced.

Theorem 2.2. [Deng et al. 00] Let ΓG = (E, γ) be the vertex cover game defined on
the graph G = (V, E). Then ΓG is totally balanced if and only if G is a bipartite
graph.

3. Vertex Cover Game with Stable Core

Let ΓG = (E, γ) be the vertex cover game defined on the graph G = (V, E).
Before discussing the core stability of ΓG, we need some lemmas.

Lemma 3.1. [Deng et al. 99] We have x ∈ C(ΓG) if and only if

(1) x ≥ 0;

(2) x(E) = γ(E);

(3) x(E(v)) ≤ 1 for each v ∈ V .

Lemma 3.2. Let the vertex cover game ΓG = (E, γ) be balanced. If ΓG has a stable
core, then there exists a core allocation x such that x(e) > 0 for all e ∈ E.

Proof. Suppose that there is an edge e0 ∈ E such that x(e0) = 0 for all x ∈ C(ΓG).
Since γ(E) > 0, there exist e1 ∈ E and x̂ ∈ C(ΓG) such that x̂(e1) > 0.
Construct a vector y : E → R+ based on x̂ as follows:

y(e) =

⎧⎪⎨⎪⎩
x̂(e) if e /∈ {e0, e1},
x̂(e1) if e = e0,

0 if e = e1.
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Obviously, y ∈ I(ΓG) \ C(ΓG). Since C(ΓG) is stable, there exist x∗ ∈ C(ΓG)
and a nonempty set S ⊆ E such that x∗ dominates y on S.

Note that it must be the case that e0 ∈ S. Otherwise, we distinguish two
cases:

(a) e1 ∈ S. Since y(e1) = 0, each core allocation cannot dominate y on S.

(b) e1 /∈ S. Since x̂ ∈ C(ΓG) and y(e) = x̂(e) for each e ∈ S, x∗ cannot dominate
y on S.

Therefore, we have γ(S) = x∗(S) = x∗(S \ {e0}) < y(S \ {e0}) = x̂(S \ {e0}) ≤
γ(S \ {e0}) ≤ γ(S), which is a contradiction.

The following theorem is the main result of this section.

Theorem 3.3. Let ΓG = (E, γ) be a balanced vertex cover game defined on the graph
G = (V, E). Then ΓG has a stable core if and only if each edge e ∈ E belongs to
a maximum matching of G.

Proof. Necessity. Assume that ΓG = (E, γ) has a stable core. By Lemma 3.2, for
each e ∈ E, there exists a core allocation x such that x(e) > 0. It also follows
from Theorem 2.1 that x is a convex combination of the indicator vectors of
maximum matchings. Hence e belongs to at least one maximum matching of G.

Sufficiency. Given y ∈ I(ΓG) \ C(ΓG), according to Lemma 3.1, there is a
vertex v ∈ V such that y(E(v)) > 1. Let S = E(v) \ {e ∈ E(v) : y(e) ≤ 0},
which is denoted by S = {e1, e2, . . . , ek}. It is easy to see that S �= ∅, y(S) > 1,
and y(ei) > 0, i = 1, 2, . . . , k. By our assumption, each ei ∈ S belongs to a
maximum matching of G, namely Mi, i = 1, 2, . . . , k. Since S ⊆ E(v) and Mi is
a matching, Mi

⋂
S contains the unique element ei in E(v), i = 1, 2, . . . , k.

We denote by I1, I2, . . . , Ik the respective indicator vectors of M1, M2, . . . , Mk.
Define x ∈ R|E| as follows:

x = λ1I1 + λ2I2 + · · · + λkIk,

where λi = y(ei)
y(S) , i = 1, 2, . . . , k. Obviously, λi > 0 and

∑k
i=1 λi = 1. From

Theorem 2.1, we conclude that x ∈ C(ΓG) and

x(S) =
k∑

i=1

λiIi(S) =
k∑

i=1

λi|Mi ∩ S| = 1 = γ(S),

x(ei) = λi =
y(ei)
y(S)

< y(ei), for all ei ∈ S.

That is, x dominates y on S. Therefore, C(ΓG) is stable.
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Now we discuss the algorithm for checking whether a vertex cover game pos-
sesses a stable core. The problem is stated as follows:

Problem A: Check core stability of vertex cover game.

Instance: The vertex cover game ΓG defined on a graph G.

Question: Does ΓG possess a stable core?

In [Deng et al. 99], it was shown that testing core nonemptiness of a vertex
cover game can be done in polynomial time. Theorem 3.3 yields that Problem
A is equivalent to the problem of checking whether every edge belongs to a
maximum matching of G. This can be done as follows:

First find a maximum matching M and let E∗ = E \M . For each e = (u, v) ∈
E∗, we replace e by two new edges (u, u′) and (v, v′) (where u′ and v′ are two
new pendant vertices), and check whether there is an M -augmenting path P

with one endpoint being u′ or v′. If such an augmenting path P exists, then we
modify E∗ := E∗ \ (P ∪{e}); otherwise, e is picked out as a “bad edge.” Repeat
this procedure until E∗ = ∅ or a “bad edge” occurs. Obviously, an edge belongs
to a maximum matching of G if and only if it is not a “bad edge.” Therefore,
we have the following result.

Theorem 3.4. The problem of checking core stability of a vertex cover game can be
solved in polynomial time.

4. Exactness, Extendability, and Core Largeness

In this section, we discuss three properties closely related to core stability: core
largeness, game exactness, and extendability. Given a cooperative game Γ =
(N, γ) with |N | = n, Γ is said to have a large core if for every y ∈ Rn satisfying
y(S) ≤ γ(S) for all S ⊆ N , there exists x ∈ C(Γ) such that x ≥ y. The game Γ
is called extendable if for every nonempty set S ⊂ N and every core allocation
y of the subgame (S, γS), there exists x ∈ C(Γ) such that xi = yi for all i ∈ S.
Finally, Γ is called exact if for each S ⊂ N there exists x ∈ C(Γ) such that
x(S) = γ(S).

It was shown in [Kikuta and Shapley 86] that if a balanced game has a large
core, then it is extendable; and if a balanced game is extendable, then it has a
stable core. It is shown in [Sharkey 82] that if a totally balanced game has a
large core, then it must be exact. We summarize these results in the following
theorem.
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Theorem 4.1. [Kikuta and Shapley 86, Sharkey 82] Let Γ = (N, γ) be a totally balanced
game. Then

(1) Γ has a large core implies that Γ is extendable;

(2) Γ is extendable implies that Γ is exact and has a stable core.

Theorem 2.2 tells us that ΓG is totally balanced if and only if G is a bipar-
tite graph. Therefore, in the following we focus on bipartite graphs. We shall
prove that the three properties exactness, extendability, and core largeness are
equivalent for vertex cover games defined on bipartite graphs.

Theorem 4.2. Let ΓH = (E, γ) be the vertex cover game defined on the bipartite
graph H = (V1, V2; E). Then the following conditions are equivalent:

(1) C(ΓH) is large;

(2) ΓH is extendable;

(3) ΓH is exact;

(4) every matching is contained in a maximum matching of H.

By Theorem 4.1, we have (1) ⇒ (2) ⇒ (3). It remains to prove (3) ⇒ (4) and
(4) ⇒ (1).

Proof of (3) ⇒ (4). Suppose that ΓH = (E, γ) is exact. Let M∗ be a matching
of H . By the definition of exactness, there is x∗ ∈ C(ΓH) such that x∗(M∗) =
γ(M∗) = |M∗|. Let M = {M1, M2, . . . , Mk} be the set of maximum matchings
of H . It follows from Theorem 2.1 that x∗ can be expressed as x∗ =

∑k
i=1 λiIi,

where Ii is the indicator vector of the matching Mi, λi ≥ 0 (i = 1, 2, . . . , k), and∑k
i=1 λi = 1. Then we have

x∗(M∗) =
k∑

i=1

λiIi(M∗) =
k∑

i=1

λi|M∗ ∩ Mi| ≤
k∑

i=1

λi|M∗| = |M∗|.

Therefore, equality holds throughout in the above formula, which implies that
M∗ ∩Mi = M∗ for any Mi with λi > 0. That is, M∗ is contained in at least one
maximum matching of H .
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To prove (4) ⇒ (1), we need some additional facts. The first is found in [Van
Gellekom et al. 99]. For a game Γ = (N, γ) with |N | = n, the set of lower vectors
is defined as

L(Γ) = {y ∈ Rn : y(S) ≤ γ(S), for all S ⊆ N}.

Lemma 4.3. [Van Gellekom et al. 99] Let Γ = (N, γ) be a balanced game. Then Γ = (N, γ)
has a large core if and only if y(N) ≥ γ(N) for each extreme point y of L(Γ).

In order to establish the core largeness of ΓH , we need to characterize the
extreme points of L(ΓH). For this purpose, we give an alternative description of
L(ΓH). Let S = {T : T ⊆ E(v), v ∈ V1 ∪ V2}, and

L′(ΓH) = {y ∈ Rn : y(S) ≤ 1 for all S ∈ S}.

Lemma 4.4. Let ΓH = (E, γ) be the vertex cover game defined on a bipartite graph
H = (V1, V2; E). Then

(1) L(ΓH) = L′(ΓH).

(2) Each extreme point of L′(ΓH) is the indicator vector of a maximal match-
ing of H.

Proof. (1) It is easy to see that L(ΓH) ⊆ L′(ΓH). Then let us prove the other
direction. Given y ∈ L′(ΓH), we have to check that y(S) ≤ γ(S) for every S ⊆ E.
Assume that γ(S) = k. Then S can be divided into k disjoint subsets, namely
S1, S2, . . . , Sk, where Si ∈ S, i = 1, 2, . . . , k. Since y ∈ L′(ΓH), y(Si) ≤ 1 for each
i = 1, 2, . . . , k. Therefore, y(S) =

∑k
i=1 y(Si) ≤ k = γ(S). That is, y ∈ L(ΓH).

Hence L(ΓH) = L′(ΓH).
(2) First, we show that the extreme points of L′(ΓH) are nonnegative. Suppose

that y is an extreme point of L′(ΓH) with at least one negative component. Then
we define two vectors y1 and y2 as follows:

y1
i =

{
yi if yi ≥ 0,

0 if yi < 0,
y2

i =

{
yi if yi ≥ 0,

2yi if yi < 0.

It is easy to see that y1, y2 ∈ L′(ΓH). Since y �= y1, y �= y2, and y = y1+y2

2 , it
follows that y is not an extreme point of L′(ΓH).

Second, we show the correctness of statement (2) of this lemma. Consider the
following polyhedron:

L′′(ΓH) = {y ∈ Rn : y(S) ≤ 1, ∀S ∈ S; y ≥ 0}
= {y ∈ Rn : y(E(v)) ≤ 1, ∀v ∈ V ; y ≥ 0},
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where the second equality follows from the definition of S. Since the extreme
points of L′(ΓH) are nonnegative, each extreme point of L′(ΓH) is also an ex-
treme point of L′′(ΓH). Let y∗ be an extreme point of L′′(ΓH). Based on linear
programming theory, there exists a nonnegative vector ω such that y∗ is the
unique optimal solution of the following linear program:

LP∗ : max
{
ωty : y(E(v)) ≤ 1, ∀v ∈ V ; y ≥ 0

}
.

Since H is a bipartite graph, the coefficient matrix of the constraints of LP∗ is
totally balanced. Hence, y∗ must be an integer vector, i.e., a {0, 1}-vector, that
is the indicator vector of a matching M of H .

Assume that M is not a maximal matching. Then there exists a matching
M ′ with M ⊂ M ′. It follows that the indicator vector of M ′ is also an optimal
solution of LP∗, contradicting the fact that y∗ is the unique optimal solution.
Therefore, M is a maximal matching.

With Lemmas 4.3 and 4.4, we are ready to prove (4) ⇒ (1).

Proof of (4) ⇒ (1). Let H = (V1, V2; E) satisfy condition (4), and let y be
an extreme point of L(ΓH). It follows from Lemma 4.4 that y is the indicator
vector of a maximal matching M . By condition (4), M is certainly a maximum
matching of H . Hence y(E) = |M | = γ(E). By Lemma 4.3, ΓH has a large
core.

There is also an algorithmic problem:

Problem B: Check extendability, exactness, and core largeness of a
vertex cover game on a bipartite graph.
Instance: The vertex cover game ΓH defined on a bipartite graph H .
Question: Is ΓH extendable, exact, and with large core?

Thanks to Theorem 4.2, Problem B is equivalent to determining whether every
matching is contained in a maximum matching of H . In order to investigate the
algorithm for this problem, we need some preparation.

We say that a graph G = (V, E) is matching-normal if every maximal match-
ing of G is already a maximum matching of G. It is easy to see that G be-
ing matching-normal is equivalent to condition (4) of Theorem 4.2. Note that
finding a maximal matching with minimum cardinality (called a minimum max-
imal matching) is NP-hard, even for planar or bipartite graphs [Yannakakis and
Gavril 80]. However, in the following we shall show that checking whether a
bipartite graph G is matching-normal, i.e., checking whether the cardinality
of a minimum maximal matching of G equals the matching number ν(G), is
polynomially solvable.
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A vertex v of a graph G = (V, E) is critical if it satisfies (1) ν(G\v) = ν(G)−1
and (2) there is a maximum matching of the subgraph G \ v saturating all the
vertices in NG(v).

Note that the maximum matching problem in a bipartite graph can be trans-
formed into the max-flow problem in the associated network, whereby each vertex
of the original graph is connected to the “source” or “sink” by a related arc [Pa-
padimitriou and Steiglitz 82, Chapter 10]. For a bipartite graph H = (V1, V2; E),
we can identify its critical vertices as follows:

Taking a vertex v ∈ V1∪V2, we first find a maximum matching Mv in H \v. If
|Mv| = ν(H)−1, then instead of finding a maximum matching in H\v saturating
all the vertices in NH(v), one can find a max-flow in the associated network with
the lower bounds of capacities being 1 on the related arcs of NH(v). Therefore,
we have the following result.

Lemma 4.5. Given a bipartite graph H = (V1, V2; E), the critical vertices of H can
be identified in polynomial time.

Now we are in a position to characterize a matching-normal bipartite graph.

Lemma 4.6. Let H = (V1, V2; E) be a bipartite graph. Then H is matching-normal
if and only if there is no critical vertex in H.

Proof. Necessity. If there is a critical vertex v ∈ V1 ∪ V2, then there must be a
maximum matching M ′ of the subgraph H \v such that |M ′| = ν(H)−1 and M ′

saturates all the vertices in NG(v). It is easy to see that M ′ is in fact a maximal
matching in the original graph H , implying that H is not matching-normal.

Sufficiency. Suppose that H is not matching-normal and M ′ is a maximal
matching of H with |M ′| < ν(H). Choose a maximum matching M∗ of H such
that |M ′ ∩ M∗| is as large as possible.

Consider F = G[M ′M∗], where M ′M∗ denotes the symmetric difference
of M ′ and M∗. The choice of M∗ ensures that each component of F is a path
starting and ending with edges in M∗, and with edges alternately in M ′ and
M∗. Select one component of F , denoted by P0. Obviously, both end vertices
of P0 are M∗-saturated but M ′-unsaturated. According to König’s theorem and
its proof [Reinhard 00], we have the following claim.

Claim 4.7. There is a minimum vertex cover K∗ of H containing at least one of
the two end vertices of P0, denoted by v0. Moreover, K∗ \ v0 is a vertex cover of
the subgraph H \ v0.
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Thus we can obtain another matching M̃ of H by augmenting M ′ along all
the components of F except for P0. It is easy to see the following facts:

(1) |M̃ | = |M∗| − 1 = ν(H) − 1;

(2) M̃ is also a maximal matching of H , since all the M ′-saturated vertices are
still saturated by M̃ ;

(3) M̃ is a maximum matching of the subgraph H \v0, which follows from Claim
4.7 and König’s theorem.

Facts (1), (2), and (3) yield directly that v0 is a critical vertex of H . This
completes the proof.

With Theorem 4.2 and Lemmas 4.5 and 4.6, we have obtained the following
result.

Theorem 4.8. The problem of checking extendability, exactness, and core largeness
of the vertex cover game on a bipartite graph can be solved in polynomial time.
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