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Toward Quantifying Vertex
Similarity in Networks
Charalampos E. Tsourakakis

Abstract. Vertex similarity is a major concept in network science with a wide range of
applications. In this work we provide novel perspectives on finding (dis)similar vertices
within a network and across two networks with the same number of vertices (graph
matching). With respect to the former problem, we propose to optimize a geometric
objective that allows us to express each vertex uniquely as a convex combination of a
few extreme types of vertices. Our method has the important advantage of supporting
efficiently several types of queries such as, which other vertices are most similar to this
vertex? by using appropriate data structures and by mining interesting patterns in the
network. With respect to the latter problem (graph matching) we propose the general-
ized condition number—a quantity widely used in numerical analysis— κ(LG , LH ) of
the Laplacian matrix representations of G, H as a measure of graph similarity, where
G, H are the graphs of interest. We show that this objective has a solid theoretical ba-
sis, and, we propose a deterministic and a randomized graph alignment algorithm. We
evaluate our algorithms on both synthetic and real data. We observe that our proposed
methods achieve high-quality results and provide us with significant insights into the
network structure.

Color versions of one or more of the figures in the article can be found online at
www.tandfonline.com/uinm.
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1. Introduction

Vertex similarity is an important network concept with a broad range of sig-
nificant applications. Paradoxically, a major step toward the successful quan-
tification of vertex similarity is finding a good definition of it. Typically, one is
interested either in finding similar vertices in a given network or in finding similar
vertices across two different networks. The former problem emerges in numerous
applications in social networks such as link prediction and recommendation. It
also emerges in the domain of privacy because the improved ability to predict an
edge may be used for malicious purposes as well [Hay et al. 08]. The latter prob-
lem emerges also in various domains including graph mining, computer vision,
and chemistry. The interested reader is urged to read [Zager 05] which contains
a wealth of applications. In this work we provide novel perspectives on the two
aforementioned problems. On purpose we state them abstractly using quotes in
several places, in order to emphasize that two main contributions of our work
are two novel formalizations of these problems. The first problem is: given an
undirected graph G(V,E) and two vertices u, v ∈ V , how “similar” are u and
v? The second problem is: given two graphs G(VG,EG ), H(VH ,EH ) such that
|VG | = |VH |, is there a permutation of the vertices of H that “reveals any simi-
larities” between G and H? Can we find such a permutation efficiently? We will
refer to these problems as the vertex similarity and the graph matching problem,
respectively.

1.1. Paper Contributions and Road map

Our contributions are summarized as follows.

� For the vertex similarity problem:
• We propose a novel approach, which is inspired by the concept of

archetypal analysis [Cutler and Breiman 94]. We formalize our problem
as optimizing a geometric objective, namely finding an enclosing sim-
plex of minimum volume that is robust to outliers for a special cloud
of points.

• We propose an efficient algorithm for optimizing our objective. An
output example of our method is shown in Figure 1(a), which shows a
minimum-area 2-simplex S for a normalized Laplacian graph embed-
ding [Belkin and Niyohi 03] of the largest component of the Netscience
network, (see Table 1). Using the Euclidean distance between the mix-
ture coefficients the smaller the distance is the more similar the vertices
are we find that the vertices Prabhakar Raghavan, Ravi Kumar, and
Andrew Tomkins are highly similar and that the three extreme points
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Figure 1. (a) Minimum-area 2-simplex S for an informative embedding of the
largest component of the Netscience network G (see Table 1 for the dataset
details). S allows us to express each data point as a unique convex combination of
its extreme points and, hence, call two vertices of G similar if their corresponding
mixture coefficients are close. (b) Permutahedron P of the symmetric group S4 .
The 3 shaded vertices of P define a hypothetical set of isomorphisms between G
and H .
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(archetypes) of S correspond to three influential groups of researchers.
Specifically, the three vertices of the simplex lie close to Kurths and
Bocalletti, Barabasi and Jeong, Kumar, and Raghavan, Tomkins, and
Rajagopalan who are respectively, three authoritative groups of re-
searchers on social networks.

• Our method has the advantage of supporting efficiently queries of the
type, which other vertices are most similar to this vertex? and which are
the most dissimilar vertices to this vertex? by the use of the appropriate
data structures [Arya et al. 98].

� For the graph matching problem:
• We introduce a novel criterion of similarity between two graphs G,H:

the generalized condition number of their Laplacian matrix representa-
tions.

• In contrast to frequently used heuristics, our criterion has a solid the-
oretical basis. Specifically, consider Figure 1(b), which shows the per-
mutahedron P of the symmetric group S4 [Burkard et al. 09] with
three shaded vertices that correspond to three hypothetical permuta-
tions, which make’s graph H identical to graph G. Theorem 4.1 proves
that the global minimum of our proposed objective function occurs at
the permutations that make H equal to G. Specifically, our proposed
Metropolis chain in the limit of λ→ +∞ (λ ≥ 1 is a parameter in our
chain) converges to the uniform distribution over the shaded set, i.e.,
π(Shaded Vertex) = 1/3, π(Nonshaded Vertex) = 0.

• Despite the fact that in this work we focus on the restricted version
of the graph matching problem where G,H have the same number
of vertices, this does not make our work useless, for two main reasons.
First, there exist applications where |VG | = |VH | [Zager 05]. Second, our
conceptual contribution is likely to be extendable to the more general
case where |VG | �= |VH |, as will be discussed in Section 6.

• Our proposed method can also be used in conjuction with other graph
matching methods, e.g., as a postprocessing tool. We explore this pos-
sibility in Section 5, where we show that this approach yields excellent
practical performance.

The article is organized as follows: Section 2 briefly presents related work.
Sections 3 and 4 present our proposed methods for the vertex similarity and the
graph matching problem, respectively. Section 5 shows an experimental valida-
tion and evaluation of our proposed methods. Section 6 concludes the paper.
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2. Related Work

In Sections 2.1, 2.2, and 2.3 we present work related to our proposed method in
Section 3. In Sections 2.4, 2.5 we present work related to our proposed method
in Section 4.

2.1. Vertex Similarity

The key idea that appears in different guises in the literature related to the
vertex similarity problem is the following: two vertices are similar if their neigh-
bors are similar. The recursive nature of this idea leads to recursive algorithms.
It is worth pointing out that other measures of similarity exist: the number of
common neighbors, Jaccard’s coefficient, Salton’s coefficient, the Adamic/Acar
coefficient [Adamic and Adar 03], etc. These measures have significant short-
comings. For instance, two vertices may be highly similar even if they share no
common neighbors [Leicht et al. 06].

The algorithm that has influenced and motivated a large and significant
amount of research on vertex similarity is Kleinberg’s Hypertext-Induced Topic
Search (HITS) algorithm [Kleinberg 99]. Interestingly, [Blondel et al. 03] gen-
eralized HITS and provided a general scheme for finding the similarity of two
vertices. Jeh and Widom proposed the Simrank algorithm [Jeh and Widom 02]
to compute all-pairs vertex similarities in a graph. Leicht et al. propose an-
other recursive measure of similarity closely resembling the centrality measure
of Katz [Leicht et al. 06]. Recursive algorithms are closely connected to spectral
graph theory. Additionally, spectral graph theory through random walks pro-
vides the basis for a rich set of similarity measures, including commute times
and graph kernel methods [Fouss et al. 07]. Recently, nonnegative matrix factor-
ization [Arora et al. 12] has been proposed in the context of role identification
in social networks [Henderson et al. 12].

Vertex similarity has numerous applications such as link recommendation
[Liben-Nowell and Kleinberg 03], schema matching [Melnik et al. 02], and pri-
vacy attacks [Hay et al. 08]. Our geometric perspective on the problem of vertex
similarity in Section 3 has not been considered in the literature, to the best of
our knowledge.

2.2. Archetypal Analysis

The idea of archetypal analysis was born by Breiman during his work on pre-
dicting the next-day ozone levels. Breiman proposed that each day could be
quantified as a mixture of “extreme” or “archetypal” days [Cutler 10]. Culter
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and Breiman introduced archetypal analysis and proposed an alternating mini-
mization procedure [Cutler and Breiman 94]. Archetypal analysis has numerous
applications in various fields including computational biology [Huggins et al. 07]
and marketing [Riedesel 03].

2.3. Spectral Unmixing

Spectral unmixing is a central problem in spectral imaging. [Keshava 03] surveys
existing algorithms for this problem. Of special interest to us is the geometric
approach, inspired by Craig’s seminal work [Craig 94], in which a minimum-
volume simplex is fitted to the set of points.

The computational complexity of fitting a minimum-volume-enclosing simplex
depends on the dimensionality k. Specifically, when k = 2 there exist efficient
algorithms for finding the minimum-area enclosing triangle [O’Rourke et al. 86].
When k = 3, Zhou and Suri give an algorithm with complexity O(n4) [Zhou and
Suri 00]. Packer showed that the problem is NP-hard when k ≥ log (n) [Packer
02].

2.4. Graph Matching

The graph matching problem has attracted a lot of interest [Pattern Recogni-
tion Letters 03]. Umeyama proposed that instead of trying to find a permutation
matrix P , i.e., one of the vertices of the Birkoff polytope [Burkard et al. 09] (it is
a polytope whose vertices correspond to permutation matrices, see the closely re-
lated permutahedron in Figure 1(b)), which minimizes ||PAGPT −AH ||, where
AG,AH are the adjacency matrix representations of graphs G,H, one may re-
lax the problem to finding an orthogonal matrix P ′ that minimizes the same
objective [Umeyama 98]. Other methods relax the constraint of searching for a
permutation matrix P to finding a doubly stochastic matrix.

Spectral approaches play a prominent role in matching two shapes, a key prob-
lem in computer vision. The problem of shape matching on preprocessing reduces
to graph matching [Shapiro and Brady 92]. Spectral methods take as input two
weighted graphs, each representing a shape and consisting typically of three steps
[Bronstein et al. 10]. We believe that there may be fruitful connections between
our proposed method in Section 4 and the first two steps of these methods. In
the first step, the Laplacian embedding of the two shapes is computed. In the
second step, a permutation matrix P and a sign matrix S, which matches the
first k eigenvectors of these shapes to each other, are computed. Typically, this
is done by finding the minimal cost assignment between these vectors. The final
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step is the point registration of these two aligned embeddings, e.g., by using the
expectation–minization (EM) algorithm.

When the two graphs of interest have a different number of vertices, the typical
representation is the compatibility graph. Using this representation, the graph
matching problem can be formulated as an integer quadratic problem (IQP),
which can be tackled in various ways. Dominating approaches include semidefi-
nite programming [Schellewald and Schnörr 05], spectral approaches [Bai et al.
04], linear programming relaxations [Klau 09] and the popular graduated as-
signment method [Gold and Rangarajan 96]. The latter relaxes the IQP into a
nonconvex quadratic program and solves a sequence of convex optimization ap-
proximation problems. [Blondel et al. 03] use a generalization of the HITS method
[Kleinberg 99] to find graph matchings. As we mentioned in Section 2.1, their
method is also applicable to the vertex similarity problem. Other approaches
include belief, propagation (BP) [Bayati et al. 09] and kernel-based methods
[Smalter et al. 08].

2.5. Generalized Condition Number

A fundamental problem of linear algebra is solving the linear system of equa-
tions Ax = b [Golub and Van Loan 96]. In the case of a preconditioned linear
system, the corresponding quantity that determines the rate of convergence of
the solver, e.g., preconditioned conjugate gradient, is the generalized condition
number [Golub and Ye 02]. The definition follows:

Definition 2.1. [Gremban 96] Let A,B be two real matrices with the same null space K;
λ is a generalized eigenvalue of the ordered pair of matrices (A,B), also called
“pencil”, if there exists a vector x /∈ K such that Ax = λBx. Let Λ(A,B) be
the set of generalized eigenvalues of the pencil (A,B). The generalized condition
number κ(A,B) is defined as the ratio of the maximum value λmax(A,B) to the
minimum value λmin(A,B).

For every unit norm vector x, the following double inequality holds:

λmin(A,B)xT Bx ≤ xT Ax ≤ λmax(A,B)xT Bx. (2.1)

For the special case of interest where the pencil (LG,LH ) is a pair of Laplacian
matrices of two connected graphs G,H on the same vertex set, the condition
number is given by the following expression:

κ(LG,LH ) =
(

max
xT 1=0

xT LGx

xT LH x

)(
max

xT 1=0

xT LH x

xT LGx

)
.
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Notice that because G,H are connected, their null space is the same and
specifically the span of the all-ones vector 1 [Golub and Ye 02]. Generalized
eigenvalue problems of a special form have several important applications in
computer science, see for instance [Belkin and Niyohi 03, Shi and Malik 00].

3. VertexSim: Vertex Similarity via Simplex Fitting

The main assumption of our proposed method is that each vertex is a “combi-
nation” of a few “extreme” types of vertices. This assumption lies conceptually
close to archetypal analysis [Cutler 10]. We formalize mathematically the notions
of “combination” and “extreme” geometrically in the following.

Our proposed algorithm is VertexSim shown as Algorithm 1. The algorithm
takes as input the graph G(V = [n], E), the dimension of the simplex we wish
to fit, and a parameter γ, which tunes the sensitivity of the fitting algorithm to
outliers. We assume that k 	 n. In the first step, we embed the graph G on the
Euclidean space R

k . Hence, each vertex is mapped to a k-dimensional point. It is
worth emphasizing that typically real-world networks of small and medium size
(up to several thousands of vertices and edges) have strong geometric structure.
As the size grows, the geometry becomes less apparent (see also Section 6).
There exist several methods to obtain an informative embedding of the graph.
The majority of them are spectral [Lee and Verleysen 07]. In our experiments we
choose the k smallest nontrivial eigenvectors, i.e., the eigenvectors corresponding
the k smallest, nonzero eigenvalues of the normalized Laplacian [Belkin and
Niyohi 03].

Algorithm 1. VertexSim

Require: Connected, undirected graph G([n], E). Dimension k. Parameter γ.
(1) Embed the graph using the k smallest nontrivial eigenvectors of the nor-
malized Laplacian of G.
(2) [K, {θi}i∈[n ] ]← Solve Optimization Problem 3.1 using gradient descent.
(3) For every pair of vertices (i, j) compute the Euclidean distance between
the mixture coefficient vectors θi, θj .
(4) Add points {θi}i∈[n ] to a data structure supporting nearest neighbor search
queries.

In the second step, we learn a simplex, i.e., a set of k + 1 affinely independent
points, which encloses the cloud of points. The k + 1 vertices of the simplex
are the extreme types of vertices, and each vertex is a convex combination of
these types. The rationale behind the choice of a simplex is that each point is
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expressed uniquely as a convex combination of the extreme points. This allows us
to perform a quantitative analysis of vertex similarity and answer queries such as,
which are the three vertices most similar to vertex v? with the use of appropriate
data structures [Arya et al. 98]. Among all simplexes that fit the cloud of points
we favor the one with the smallest volume, inspired by the seminal work of
[Craig 94]. There exist a wide variety of off-the-shelf algorithms that compute
a minimum-volume-enclosing simplex, and reliable implementations are publicly
available. We use the method developed by [Tolliver et al. 10], which solves the
following optimization problem, where X = {x1 , . . . , xn} ⊆ R

k is the cloud of
points, K = [v0 | . . . |vk ] is a simplex in R

k , and θi ∈ [0, 1]k+1 for i = 1, . . . , n is
the vector of mixture coefficients of point i:

min
K,θ

:
s∑

i=1

|xi −Kθi |p + γ log vol(K)

∀θi : θT
i 1 = 1, θi  0 (3.1)

The first term in the objective makes the formulation robust to outliers, see
[Tolliver et al. 10]. We use |x|p to denote the p-norm of vector x. We choose
p = 1. We need to derive the necessary partial derivatives. For completeness,
we include here the computation. Let the simplex be represented by the vertex
matrix K = [v0 |...|vk ]. Then,

vol(K) = ck · det
(
ΓT KKT Γ

)1/2
= ck ·

√
det Q, (3.2)

where ck is the volume of the unit simplex defined on k + 1 points and Γ is a fixed
vertexedge incidence matrix such that ΓT K = [v1 − v0 |...|vk − v0 ]. It follows that

log vol(K) = log ck +
1
2

log detQ ∝ log
k∏

d=1

λd(Q) =
k∑

d=1

log λd(Q).

Hence, the gradient of log vol(K) is given by

∂ log vol(K)
∂Kij

=
k∑

d=1

∂

∂Kij
λd =

k∑
d=1

zT
d (ΓT EijE

T
ijΓ)zd,

where the eigenvector zd satisfies the equality Qzd = λdzd , and Eij is the indica-
tor matrix for the entry ij. To minimize the volume, we move the vertices along
the paths specified by the negative log gradient of the current simplex volume.

Finally, in the third and fourth step’s we compute the similarity between ver-
tices based on the set of mixture coefficients. Specifically, we use the Euclidean
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distance of mixture coefficients and a data structure that supports nearest neigh-
bor queries [Arya et al. 98] to answer quickly typical queries as those we have
mentioned.

It is worth emphasizing that the vertices of the fitted simplex may reveal struc-
ture in the network. Depending on the network, a domain expert can interpret
their meaning. In the networks we use in Section 5, the interpretation is straight-
forward. Because of the special importance of the simplex vertices, we shall refer
to them as social network archetypes. It is worth noticing that our proposed for-
mulation compared to the k-community literature allows us to mine the graph
even when there are no well-shaped clusters, see for instance Figures 1(a), 4
and 5.

4. CondSim: Graph Similarity and the Generalized Condition Number

4.1. Theoretical Result and Algorithms

Let G([n], EG ),H([n], EH ) be connected graphs on n vertices (labeled for sim-
plicity {1, 2, .., n} = [n]), and LG,LH be their Laplacian matrix representation,
respectively. Also, let Λ(LG,LH ) and κ(LG,LH ) be the set of generalized eigen-
values and the generalized condition number of the pencil (LG,LH ) [Golub and
Ye 02, Golub and Van Loan 96]. We use Sn to denote the symmetric group, i.e.,
the group whose elements are all the permutations of the set [n] and whose group
operation is the composition of such permutations. We denote with LG ( σ ) where
σ ∈ Sn the Laplacian matrix representation of the graph G whose vertex set has
been renamed according to σ, i.e., v �→ σ(v) for all v ∈ [n]. Our main result is
the next theorem.

Theorem 4.1. Let Ω be the state space representing the set of all permutations
{σ : σ ∈ Sn}, and f : Ω→ R

+ be a function defined by f(ω) = κ(LG,LH (ω ) ) for
all ω ∈ Ω. Also, fix λ ≥ 1 and define πλ (ω) = λ−f (x )

Z (λ) where Z(λ) =
∑

x∈Ω λ−f (x)

is the normalizing constant that makes πλ a probability measure. We define a
Metropolis chain, in which we allow transitions between two states if and only if
they differ by a transposition as follows: if f(ω1) < f(ω2) the Metropolis chain
accepts the transition ω1 → ω2 with probability λf (ω1 )−f (ω2 ), otherwise, always
accept it.

As λ→ +∞ the stationary distribution πλ of the Metropolis chain converges
to the uniform distribution over the global minima of f . Furthermore, if G ∼ H,
i.e., G,H are isomorphic, then πλ converges to the uniform distribution over the
set of isomorphisms {σ : LG = LH (σ ) , σ ∈ Sn}.
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Proof. Recall that the Laplacian representation of a connected graph is a sym-
metric, positive semidefinite matrix and that the dimension of its null space
is 1 (the all-ones vector 1). Consider now the generalized eigenvalue problem
LGx = λLH x. The pencil (LG,LH ) is Hermitian semidefinite. Therefore, there,
exists a basis of generalized eigenvectors [Golub and Van Loan 96]. Notice that
the all-ones vector 1 is a generalized eigenvector with corresponding generalized
eigenvalue 0. Let Λ(LG,LH ) = {0 = λ0 < λ1 ≤ . . . ≤ λn−1 be the set of general-
ized eigenvalues. Then, κ(LG,LH ) = λn −1

λ1
.1 We prove that κ(LG,LH ) = 1 if and

only if G ∼ H.

• κ(LG,LH ) = 1⇒ G ∼ H :

The generalized eigenvalues are λ(LG,LH ) = (0 = λ0 < 1 = λ1 = . . . = λn−1).
Let (1 = u0 , u1 , . . . , un−1) be the corresponding generalized eigenvectors which
form a basis. Define X = LG − LH . Notice that Xui = 0 for all i = 0, .., n− 1.
Hence, X = 0 and therefore LG = LH → G ∼ H.
• G ∼ H ⇒ ∃σ ∈ Sn s.t. κ(LG,LH (σ ) ) = 1 :

Since G ∼ H there exists a permutation σ ∈ Sn such that LG = LH (σ ) . Simply,
by substituting the eigenvectors {ui}i=0,..,n−1 of LG in LGx = λLH (σ ) x = λLGx,
we obtain that the generalized eigenvalues are (0, 1, 1, .., 1) and the corresponding
eigenvectors (1 = u0 , u1 , . . . , un−1). Hence, κ(LG,LH (σ ) ) = 1.

Now, define Ω∗ = {ω ∈ Ω : f(ω) = f ∗ = minx∈Ω f(x)}. Because our chain is a
Metropolis chain [Levin et al. 08], its stationary distribution is πλ . Therefore,

lim
λ→+∞

πλ(ω) = lim
λ→+∞

λf (ω )/λf ∗

|Ω∗|+ ∑
ω∈Ω−Ω∗ λ

f (ω )/λf ∗ (4.1)

=
I(ω ∈ Ω∗)
|Ω∗| ,

where I(α ∈ A) is an indicator variable equal to 1 if element α belongs to set
A, otherwise 0. If G,H are isomorphic, then f ∗ = 1 and, therefore, the above
result suggests that the Metropolis chain converges to the uniform distribution
over the set {σ : LG = LH (σ ) , σ ∈ Sn}.

It is worth emphasizing that our result is valid even when the two Lapla-
cians are cospectral. For instance, Figure 2 shows two cospectral graphs with
respect to their Laplacians. Both Laplacians share the same set of eigenvalues

1 Notice that despite the fact that our matrices are positive semidefinite, and not positive
definite, this doesn’t cause any real problem with respect to defining the generalized condition
number since LG , LH have the same null space.
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Figure 2. Cospectral Laplacians: The two nonisomorphic graphs have cospectral
Laplacian matrix representation. The minimum generalized condition number
over the space of 6! permutations is 6.1852.

{0, 0.76, 2, 3, 3, 5.24}. However, over the space of 6! permutations, the minimum
generalized condition number is 6.19.

Our proposed algorithm CondSimGradDescent is shown as Algorithm 2. It is
a greedy, efficient heuristic. The algorithm takes two parameters, the maximum
number of iterations q and a parameter ε > 0 which quantifies the least amount
of progress required by the algorithm to keep iterating. This may help to avoid
extremely incremental improvements that do not significantly improve the graph
matching but cost a great deal computationally. Algorithm 2 performs gradient
descent with respect to the generalized condition number using transpositions.
On the one hand, algorithm 2 tends to be computationally more aggressive than
the Metropolis chain in the sense that it always moves to a state/permutation
that results in a smaller generalized condition number. On the other hand, the
Metropolis chain, because of the randomization, is likely to avoid local minima.
Our algorithm returns the permutation that defines the best graph alignment
found and the corresponding condition number.

The complexity of our Algorithm 2 depends on the choice of algorithm that
solves the generalized eigenvalue problem. Specifically, let f(LG,LH ) be the cor-
responding running time as a function of the two Laplacians. Also let q abbreviate
the maximum number of iterations MAXITER. Then the total running time is
upper bounded by O(qn2f(LG,LH )) because we perform q steps and at each
step we compute the generalized condition number for the

(
n
2

)
possible trans-

positions. In our experiments we use the algorithm of [Golub and Ye 02]. The
speed of convergence is given in Lemma 1 [Golub and Ye 02]. For our purposes,
since we set the number of iterations (which are matrix-vector multiplications)
of the Golub–Ye algorithm to a constant, we may assume that the running time
that computing the smallest nontrivial and the largest generalized eigenvalue of
the pencil (LG,LH ) is linear in the total number of edges |EG |+ |EH | = O(m),
where m = max (|EG |, |EH |). It is worth noticing that, using a series of trans-
positions, we can reach any permutation from any starting permutation. If m
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is large, e.g., m� n log n, one can use the developed theory of spectral sparsi-
fiers to speed up the generalized condition number computations. Specifically,
one may perform first the Spielman–Srivastava sparsification [Spielman and Sri-
vastava 08] on both Laplacians LG,LH , obtain spectrally equivalent matrices
L̃G , L̃H , and apply our algorithm on the latter Laplacians.

Algorithm 2. CondSimGradDescent.
Require: LG,LH the Laplacian matrix representation of G,H respectively. q

(Maximum number of iterations). ε > 0 (Tolerance). {σ initialized to the iden-
tity permutation}
σ ← (1, 2, .., n)
i← 0
while i ≤ q do

i← i + 1
σ∗ ← arg maxσ ′∈S ′ κ(LG,LH (σ ) )− κ(LG,LH (σ ′) ) where S ′ is the set of all
permutations that differ from σ. a single transposition.
if κ(LG,LH (σ ) )− κ(LG,LH (σ ′) ) > ε then

σ ← σ∗

CN← κ(LG,LH (σ ) )
else

break
end if
if CN = 1 then

break
end if

end while
Return (σ, CN)

4.2. Further Insight: Theory of Support Trees

We proved in Theorem 4.1 that when the generalized condition number is 1, then
indeed G,H can be perfectly matched, i.e., G,H are isomorphic. To complete the
justification of our rationale behind the choice of our similarity measure we need
to explain why a value close to 1 implies a good graph alignment. The answer
lies in the theory of support preconditioners [Gremban 96, Bahendr n.d.]. In the
following, let A,B be Laplacian matrices.

Definition 4.2. Support The support σ(A,B) of matrix B for A is the greatest
lower bound over all τ such that τB −A is positive semidefinite, i.e., σ(A,B) =
lim inf{τ : τB −A  0}.
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Name (Abbr.) Nodes (n) Edges (m)

� Netscience 1589 2742
� Football 115 613
� Political Books 105 441
 Erdös ’72 5488 7085
 Erdös ’82 5822 7375
 Erdös ’02 6927 8472
 Roget Thesaurus 1022 3648

Table 1. Datasets.

Definition 4.3. Congestion & Dilation An embedding of H into G is a mapping of vertices
of H onto vertices of G, and edges of H onto paths in G. The dilation d(G,H)
of the embedding is the length of the longest path in G onto which an edge of H

is mapped. The congestion ge(G,H) of an edge e in G is the number of paths of
the embedding that contain e. The congestion g(G,H) of the embedding is the
maximum congestion of the edges in G.

The following facts have been proved in Gremban’s PhD thesis [Gremban
96]: (a) The support number σ(A,B) is bounded above by the maximum prod-
uct of dilation and congestion over all embedding of A into B; (b) κ(A,B) ≤
σ(A,B)σ(B,A), Lemma 4.8 [Gremban 96]. Fact (b), in combination with fact
(a), shows that the generalized condition number is closely related to the good-
ness of two embeddings, i.e., of H into G and vice versa. When both the dilation
and the congestion of the embeddings—or in our terminology of the alignments—
are small then the generalized condition number is small.

5. Experiments

In Sections 5.1, 5.2 we describe the datasets we used in our experiments and the
experimental setup. In Sections 5.3, 5.4 we provide an experimental evaluation
of our proposed methods respectively.
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Figure 3. Performance of simplex fitting on 1000 points drawn uniformly at ran-
dom from a randomly generated k-simplex perturbed by Gaussian noise N (0, σ2 ).
Figure plots the sum of Euclidean distances of the k + 1 reconstructed simplex
vertices from the k + 1 true vertices as a function of the dimensionality k of the
simplex for five different standard deviations σ = 0.01, 0.5, 1, 5, 10. Notice that
the simplex fitting method (essentially) perfectly recovers the true simplex in all
cases.

5.1. Datasets

Table 1 summarizes the real-world datasets we used for our experiments. When-
ever neccessary, graphs were made undirected, unweighted, and self-edges were
removed. Datasets annotated with � and  are available online from [Newman
n.d., Pajek n.d.] respectively. We picked small and medium sized networks de-
liberately because the geometric structure in such networks is striking.

We also generated several synthetic datasets. Specifically, for Section 5.3.1 we
generated a cloud of points, where each point was chosen uniformly at random
from a random k-simplex (see Appendix [Levin et al. 08]) and a random stratified
social network, see Section IIIA of [Leicht et al. 06]. Notice that the first type
of synthetic data involves no graph and its goal is to test the goodness of the
simplex fitting method. Stratified networks model the phenomenon according
to which individuals make connections with individuals similar to themselves
with respect to some criterion, e.g., income, age. For each vertex, we picked an
age from 1 to 10, chosen uniformly at random. Two vertices with age i and
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Figure 4. 2-simplex fitted on a random stratified network. VertexSim correctly
assigns higher similarity values to vertices of the same age. The three vertices
of the fitted 2-simplex conceptually represent the concepts “senior/large age”
(8–10), “middle-aged/medium age”(4–7) and “young/small age” (1–3).

j, respectively, are connected with probability p0e
−αΔt where Δt = |i− j|. The

parameters are set to α = 0.8 and p0 = 0.1. Finally, for Section 5.4 we generated
random graphs of two types. Erdös-Rényi-Gilbert graphs [Bollobás 01] and R-
MAT graphs [Chakrabarti et al. 04]. For the former we use p = 0.5 and for the
latter the parameters are set to [a = 0.55, b = 0.1; c = 0.1, d = 0.25].

5.2. Experimental Setup and Implementation Details

The experiments were performed on a single machine, with Intel Xeon CPU at
2.83 GHz, 6144KB cache size and and 50GB of main memory. Our algorithms
are implemented in MATLAB. The results we show are obtained by setting
the parameter γ to 1 and the dimensionality k of the embedding equal to 2.
Clearly our method is valuable when k is larger than 3 where visualization is
impossible (see also Section 2.3 for a discussion of the computational complexity
as a function of k). Here we report results for k = 2 for visualization purposes. It
is worth pointing out two more facts concerning our experimental section: first,
VertexSim in our experiments was not affected by the value of the parameter
γ because there were no outliers in any of the embeddings, and second, we
experimented with higher values of k (from 3 to 5) obtaining interpretable results.

The wall-clock times we report use the Golub–Ye algorithm [Golub and Ye 02]
as a subroutine to compute condition numbers. In order to use this algorithm,
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which is designed for positive definite pencils, we shift slightly the spectrum
of the Laplacians: we set L′ = L + ε11T

n where ε is a small positive constant.
This is a natural “trick” to compute the generalized condition number. We use
the default settings of the eigifp software.2 It is worth mentioning that given
that our graphs are small- and medium-sized, we checked the quality of this
“trick.” We observed that when we set ε = 0.01, we obtain essentially accurate
condition numbers. For instance, assume we permute the set of vertices of the
Football network according to a randomly generated permutation. We compute
the generalized condition number using the shifting trick and the Golub–Ye
algorithm and exactly by computing the eigenvalues of (Lb)†La . In the former
case we obtain 52.592 and in the latter 52.591. This is a representative example
of what we observe in practice, which also explains why this shifting heuristic is
frequently used, see Section 6 in [Sun et al. 09].

The parameters of CondSimGradDesc were set to q = 200, ε = 0 for all exper-
iments in Section 5.4.

A final remark with respect to the experiments of CondSim in Section 5.4: it
is a well-known fact that a permutation can be decomposed in cycles and that a
random permutation has O(log n) cycles in expectation [Wilf 99]. Therefore, if
we generate only permutations chosen uniformly at random, we are restricting
ourselves, with high probability, to permutations that share a common structure.
To avoid a potential artifact in our experimental results, we generate permuta-
tions with a different number of cycles. We use a simple recursive algorithm
[Wilf 99] to generate a permutation with k cycles uniformly at random in our
experiments [see p. 33, Wilf 99]. Finally, we use third-party software and
specifically the code of [Arya et al. 98, Bayati et al. 09] and Jeremy Kepner’s
R-MAT code implementation.

5.3. VertexSim at Work

5.3.1. Synthetic Data. We validate the VertexSim algorithm in two ways: first we
verify that it can successfully recover the simplex S and, hence, the mixture
coefficients of data points sampled uniformly at random from S; and second,
we evaluate its performance on a stratified network. Figure 3 shows the perfor-
mance of our fitting method as a function of the simplex dimension (x-axis) for
five different standard deviations σ = 0.01, 0.5, 1, 5, 10 (5 lines) for a randomly
generated k-simplex. The quality of the performance (y-axis) is quantified as the
sum

∑k+1
i=1 ||vi − ṽi ||, where ṽi is the reconstructed vertex of the k-simplex. The

performance is excellent, as Figure 3 shows. The average running time for four

2 Available online at http://www.ms.uky.edu/ qye/software.html
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Figure 5. Minimum-area 2-simplexes for the (a) Football network (b) Political
books network. In both cases, VertexSim provides significant mining capabilities
for extracting pairs of highly similar vertices and concepts. For more details, see
Section 5.3.2.

executions is 0.0071 and the variance 1.4× 10−6 . It is worth mentioning that we
also tried the Chan et al. algorithm [Chan et al. 09] obtaining exactly the same
simplex.

Figure 4 shows the performance of VertexSim for a stratified network with α =
0.8 and p0 = 0.1 and ages ranging from 1 to 10, picked uniformly at random for
every vertex. Specifically, Figure. 4 shows the fitted 2-simplex. Upon performing
Step 3 of Algorithm 1, it becomes apparent that pairs of vertices with the same
age are significantly more similar than vertices with different ages, which is what
a good vertex similarity algorithm should have as its output. Furthermore, the
three vertices of the 2-simplex correspond to the three concepts, “senior/large
age,” “middle-aged/medium age,” and “young/small age.”

5.3.2. Real-world Data. Figure 5(a) shows the minimum-area-fitted 2-simplex for the
American football college network, whose vertices correspond to teams and whose
edges correspond to games among them. According to [Girvan and Newman 02]
the teams are divided into conferences containing around 8–12 teams each and
the frequency of games between members of the same conference is higher than
between members of different conferences. The three vertices of the fitted sim-
plex correspond to three conferences PAC 10, SEC, and MID. Furthermore,
VertexSim, using the fitted mixture coefficients, assigns higher similarity to ver-
tices of the same conference. The fitting algorithm took 7.5 seconds to find
the simplex. Similar remarks hold for Figure 5(b) which shows the minimum-
area-fitted 2-simplex for the political books network whose vertices represent
books-and-edges copurchasing by the same buyer. The three vertices of the sim-
plex correspond to liberal, conservative, and “neutral” books. For both datasets,
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Erdös-Renyi R-MAT

|V | 8 16 32 8 16 32

CondSimGradDescent 6/7 5/15 7/31 5/7 5/15 11/31
Belief Propagation (BP)

[Bayati et al. 09]
0/7 0/15 0/31 0/7 0/15 0/31

Table 2. Results of our method versus the belief propagation method of [Bayati
et al. 09] on various random networks for permutations whose number of cycles
ranges from 1 to |V | − 1. The fractions indicate how many times an algorithm
found a permutation makes the original graph and its permuted version exactly
the same.

the vectors of mixture coefficients provide us a novel way to determine vertex
similarities in an interpretable way. The fitting algorithm needs 6 seconds to
compute the simplex. We obtain highly interpretable results for other datasets
as well. Indicatively we report a few highly similar pairs of vertices according
to VertexSim: (musician, poetry), (melody, poetry), (voice, hearing) from the
Rogets Thesaurus network and (Vojtech Rödl, Noga Alon), (Joel Spencer, Janòs
Pach) from the Erdös collaboration network, 1972.

5.4. CondSimGradDescent at Work

5.4.1. Synthetic Data. We compare CondSimGradDescent with the belief propaga-
tion method of [Bayati et al. 09] for a few synthetic datasets in the following
way. We generate a random graph of n vertices and a permutation with k cycles,
where k ranges from 1 to n− 1. We do not consider the identity permutation
with n cycles. We permute the graph according to the random permutation and
see whether the graph matching methods can align perfectly the original graph
and its permuted version. We use two types of random graphs, namely binomial
random graphs [Bollobás 01] and R-MAT graphs with 8, 16, 32 vertices. Table 2
shows the results. As we see, CondSimGradDescent outperforms significantly BP
[Bayati et al. 09]. It is worth pointing out again that this is a validation test and
that fast graph isomorphism tests exist [Bollobás 01]. An interesting trend we
observe is that the fewer the cycles of the permutation, the easier CondSimGrad-
Descent gets trapped in local minima. On the positive side, when the number
of cycles is small, CondSimGradDescent typically finds an optimal alignment
efficiently.
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5.4.2. CondSimGradDescent as a Post-Processing Tool. Due to the computational cost of
CondSimGradDescent, a realistic use of it in large networks is as a postprocess-
ing tool. We describe a typical use of CondSimGradDescent as a postprocessing
tool that significantly improves the graph alignment in combination with the
beliefpropagation-based method of [Bayati et al. 09]. We perform the following
experiment: we consider the Football network. We generate a permutation σ uni-
formly at random and permute the labels of G accordingly. The number of fixed
points of the permutation we obtain is 0. We apply the function netalignbp(),
which is open-sourced [Bayati et al. 09]. The alignment produced by [Bayati et
al. 09] has recognized correctly 50 out of the 115 correct vertices to vertex assign-
ments. The generalized condition number equals 29.4. Applying the CondSim-
GradDesc method to the alignment obtained from belief propagation, we obtain
a generalized condition number of value 4.16, resulting in 74 correct assignments.
Each iteration of CondSimGradDesc lasts on average, 90 seconds with standard
deviation equal to 2 seconds over the 200 iterations. It is worth outlining that
the belief-propagation-based method of [Bayati et al. 09] is designed for the set-
ting where there exists a reasonable guess for the graph alignment. One should
conclude only that our proposed method is useful as a postprocessing tool, and
not draw any negative conclusions on the performance of [Bayati et al. 09].

6. Conclusion

6.1. Summary

In this work we contribute to the important problem of quantifying vertex sim-
ilarity in networks by introducing novel approaches to the problems of vertex
similarity within and across two graphs with the same number of vertices, re-
spectively. We observed an excellent performance of our algorithms both on
synthetic and on real-world networks. This verifies empirically that both the
proposed conceptual approaches as well as the algorithmic solutions are valu-
able.

6.2. Discussion and Open Problems

Concerning our first algorithm, VertexSim, two natural questions arise: Is there
always geometric structure in social networks? Can we fit other geometric ob-
jects such as simplicial complexes to capture more complex geometric structure?
Concerning the first question, [Leskovec et al. 08] have studied extensively prop-
erties of large scale networks and it appears that there exists strong geometric
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structure in small- and medium-sized networks such as those we studied in Sec-
tion 5, but the structure typically decays as the size of the network grows. The
answer to the second question is an interesting research problem.

Concerning our second algorithm, CondSimGradDescent, an interesting re-
search direction is to extend it to cases where the two graphs have a different
number of vertices. The theory of Steiner tree preconditioners [Koutis 07] is a
promising approach. Also, understanding the performance of CondSimGradDe-
scent in the isomorphism setting is another interesting problem. Finally, under-
standing its performance in simple graphs, e.g., trees, remains open.
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