
�

�

“imvol6” — 2010/7/23 — 15:43 — page 157 — #1
�

�

�

�

�

�

Internet Mathematics Vol. 6, No. 2: 157–171

On Accelerating the PageRank
Computation
Steve Osborne, Jorge Rebaza, and Elizabeth Wiggins

Abstract. In this paper we consider the problem of computing the PageRank vector in
an efficient way. By combining some of the existing techniques and different approaches,
including the power method, linear systems, iterative aggregation/disaggregation, and
matrix reorderings, we propose algorithms that decrease the number of iterations to
reach the desired solution, thus accelerating convergence to the vector that contains
the importance of web pages.

1. Introduction

The success of Google’s search engine can be partially accredited to Google’s
well-known PageRank algorithm, which orders the relevant pages returned by a
search to provide users with accurate information. The PageRank algorithm uses
a stochastic irreducible matrix that models the web and computes its dominant
eigenvector. Because of the vast size of the web, this is not only complicated
but also computationally expensive. The most basic way to find the dominant
eigenvector for such a large matrix is the power method, which though very
effective and simple, in general can exhibit very slow convergence. In this work,
we explore ways to make the process of finding the eigenvector more efficient.

The basic idea is to exploit the best features of some of the existing techniques
and combine them to achieve better rates of convergence. We also experiment
with matrix reorderings that have the potential of reducing the magnitude of the
subdominant eigenvalue of the link matrix and therefore speeding up the power
method itself.

© A K Peters, Ltd.
1542-7951/08 $0.50 per page 157

�

�

“imvol6” — 2010/7/23 — 15:43 — page 158 — #2
�

�

�

�

�

�

158 Internet Mathematics

Recent developments in improving the computation of web-page ranking in-
clude [Jeh and Widom 02], in which personalized PageRank vectors (importance
is redefined according to user preference) are computed using so-called partial
vectors and hub skeletons. This excellent idea of decomposing the computa-
tion into two parts is similar to the idea later exploited in [Berkhin 05] to pro-
duce a faster and sparse version of this page-specific algorithm. In Berkhin’s
bookmark-coloring algorithm, a predefined threshold value induces sparsity, and
his H-relative version of the bookmark-coloring algorithm runs even faster and
produces sparser vectors. Based on the approaches from [Jeh and Widom 02]
and [Berkhin 05], the algorithm for PageRank computation is further improved in
[Andersen et al. 06, Andersen and Peres 09] and applied to developing PageRank-

Nibble, a very efficient algorithm for local graph partitioning.
The original idea of [Brin et al. 99] is that given a set of n web pages, the

rank Pj of a given page can be determined in an iterative fashion by adding the
weighted ranks of the pages that have links to Pj . More precisely,

rk (Pj) =
∑

Pi∈BPj

rk−1(Pi)
|Pi| , i, j = 1, 2, . . . , n, i �= j, (1.1)

where |P | denotes the number of outlinks of page P .
If vT

k = [rk(P1) rk(P2) · · · rk(Pn)], then (1.1) can be written as

vT
k = vT

k−1H,

where the i, j entry of the matrix H is given by

Hij =

{
1/|Pi| if Pj has a link from Pi,

0 otherwise.

This equation defines the power method to find the dominant left eigenvector v

of the link matrix H associated to the eigenvalue λ = 1. The eigenvector

v = lim
k→∞

vk,

which contains the ranks of the n web pages, is the PageRank vector. To ensure
convergence of the power method we need to require that the eigenvalues of H

satisfy
|λ1| > |λ2| ≥ · · · ≥ |λn|.

On the other hand, the matrix H is modified to ensure that it is stochastic
(so that λ1 = 1) and irreducible. This ensures that up to a rescaling, the matrix
has a unique dominant eigenvector. To get a stochastic matrix, H is modified as

B = H + auT ,

�

�

“imvol6” — 2010/7/23 — 15:43 — page 159 — #3
�

�

�

�

�

�

Osborne et al.: On Accelerating the PageRank Computation 159

where u is an arbitrary probabilistic vector, and a is defined as

ai =

{
1 if page i is a dangling node,
0 otherwise.

A dangling node is a web page with no outlinks, and therefore the corresponding
row in H is a zero vector. To enforce irreducibility, B is further modified as

G = αB + (1 − α)euT ,

where α ∈ (0, 1), and e is a vector of ones. The matrix G is known as the Google
matrix. Not only is this matrix stochastic and irreducible, it is also primitive,
so that all conditions for convergence to a unique positive dominant eigenvector
are now satisfied.

Choosing α close to 1 makes G a good representation of the original web, but
it has been shown to slow the convergence of the power method considerably.
Similarly, a value of α close to zero speeds up the power method, but then G is
no longer a good representation of the original web. A value around α = 0.85
seems to be a reasonable choice.

Recall that G is a positive matrix, so that to recover sparsity, we write the
power method iteration vT

k+1 = vT
k G as

vT
k G = αvT

k H +αvT
k auT +(1−α)vT

k euT = αvT
k H +αvT

k auT +(1−α)uT . (1.2)

This involves only one vector–matrix product per iteration, using the very sparse
matrix H . This is what has made the power method the favorite algorithm for
the PageRank problem.

2. Linear System Approach

It has been proved (see, for example, [Del Corso et al. 05, Langville and Meyer 06])
that the eigenvector problem can be formulated as a linear system. More pre-
cisely, one can show that

vT = vT G ⇐⇒ (I − αHT)x = u and v =
x

‖x‖1
.

This provides the opportunity to apply a variety of available numerical methods
and algorithms for sparse linear systems [Barrett et al. 94] and to look for efficient
strategies to solve such systems as a better alternative to finding a dominant
eigenvector through the power method. For instance, one can now reorder H by
dangling nodes:

H =
[

H11 H12

0 0

]
,

�

�

“imvol6” — 2010/7/23 — 15:43 — page 160 — #4
�

�

�

�

�

�

160 Internet Mathematics

where H11 is a square matrix that represents the links from nondangling nodes
to nondangling nodes and H12 represents the links from nondangling nodes to
dangling nodes. In this case the system (I − αHT)x = u is [Langville and
Meyer 04] [

I − αHT
11 0

−αHT
12 I

] [
x1

x2

]
=

[
u1

u2

]
, (2.1)

so that we can solve the smaller system (I − αHT
11)x1 = u1 and then set x2 =

u2 + αHT
12x1, and finally normalize v = x/‖x‖1.

3. Iterative Aggregation/Disaggregation

Another attempt at outperforming the power method in the computation of the
PageRank vector comes from the theory of Markov chains. In this context,
the PageRank vector v that satisfies vT = vT G is called a stationary distribu-
tion of G. The main idea behind the iterative aggregation/disaggregation (IAD)
approach to computing the PageRank vector v is to block or partition the irre-
ducible stochastic matrix G so that the size of the problem is reduced to about
the size of one of the diagonal blocks.

The precise aggregation/disaggregation theorem says (see, for example, [Ipsen
and Kirkland 06]) that if u2 is the stationary distribution of S = G22 + G21(I −
G11)−1G12 and [v1 c]T is the stationary distribution of the aggregated matrix

A =
[

G11 G12e
uT

2 G21 1 − uT
2 G21e

]
,

then the stationary distribution of

G =
[

G11 G12

G21 G22

]

is given by v = [v1 cu2]T .
Since forming the matrix S and computing its stationary distribution u2 would

be very expensive and not efficient in practice, the idea is to use instead the
approximate aggregation matrix

Ã =
[

G11 G12e
ũT

2 G21 1 − ũT
2 G21e

]
,

and implement an iterative algorithm, where a power method step is included
at every iteration. More precisely, we have Algorithm 1.

�

�

“imvol6” — 2010/7/23 — 15:43 — page 161 — #5
�

�

�

�

�

�

Osborne et al.: On Accelerating the PageRank Computation 161

Algorithm 1. (Iterative aggregation/disaggretagion (IAD).)

1. Give an arbitrary probabilistic vector ũ2 and a tolerance ε.

2. For k = 1, 2, . . . ,

(a) Find the stationary distribution [w1 c̃]T of Ã.

(b) Set vT
k = [w1 c̃ũ2]T .

(c) Let vT
k+1 = vT

k G.

(d) If ‖vT
k+1 − vT

k ‖ < ε, stop. Otherwise, set ũ2 = (vk+1)y/‖(vk+1)y‖1.
Here (vk+1)y denotes the second block of the vector vk+1.

4. Combining IAD with the Power Method and Linear Systems

On examining the IAD algorithm above, we see that we need to compute [w1 c̃]T ,
the stationary distribution of Ã, that is,

[
w1

c̃

]T

=
[

w1

c̃

]T

Ã. (4.1)

We explore two ways to do this and compare their efficiencies.

4.1. IAD and the Power Method

The matrices G11, G12, and G21 that make up Ã are full matrices, and applying
the power method directly would not be efficient. The question is whether we
will still be able to exploit the sparsity of the original link matrix H . By setting
zT = ũT

2 G21, Ã becomes

Ã =
[

G11 G12e
zT 1 − zT e

]
.

From (4.1) we have

[wT
1 c̃] = [wT

1 c̃]
[

G11 G12e
zT 1 − zT e

]
= [wT

1 G11 + c̃zT wT
1 G12e+ c̃(1−zT e)]. (4.2)

To obtain some sparsity explicitly, first we write G in terms of H as before:

G = αH + αauT + (1 − α)euT .

�

�

“imvol6” — 2010/7/23 — 15:43 — page 162 — #6
�

�

�

�

�

�

162 Internet Mathematics

Then we block the matrices H , auT , and euT according to the blocking of G:

G =
[

G11 G12

G21 G22

]
= α

[
H11 H12

H21 H22

]
+ α

[
A B
C D

]
+ (1 − α)

[
E F
J K

]
,

(4.3)
for some matrices A, B, C, D, E, F, J, K. Now we see that

G11 = αH11 + αaxuT
x + (1 − α)exuT

x ,

G12 = αH12 + αaxuT
y + (1 − α)exuT

y ,

G21 = αH21 + αayuT
x + (1 − α)eyuT

x ,

where the subscripts x and y denote blocking of the vectors a, u, and e according
to the blocking of G. Thus, for example, ax denotes the first block of entries of
the vector a with size corresponding to the size of G11.

Now we can use the sparsity of H11, H12, and H21 to make computations
simpler and faster. The equations in (4.2) can now be written as

wT
1 = αwT

1 H11 + αwT
1 axuT

x + (1 − α)wT
1 exuT

x + c̃zT ,

c̃ = αwT
1 H12e + αwT

1 axuT
y e + (1 − α)wT

1 exuT
y e + c̃(1 − zT e).

(4.4)

For the iterative process of the power method within IAD, we give as usual
an arbitrary initial guess [wT

1 c̃] and iterate according to (4.4) for the next
approximation [wT

1 c̃] until a certain tolerance is reached.

4.2. Exploiting Dangling Nodes

Although not obvious in (4.4), it is possible to exploit not only the sparsity of
the matrices H11, H12, and H21 but also some reorderings applied to H . For
instance, if H is reordered by dangling nodes, bringing all the zero rows to the
bottom of the matrix, then the matrix H21 that is used in z = ũT

2 G21 is a matrix
of zeros. Also, by definition of the vector a, all the entries of ax will be zero. All
this reduces the power method computation in (4.4) to

wT
1 = αwT

1 H11 + (1 − α)wT
1 exuT

x + c̃zT ,

c̃ = αwT
1 H12e + (1 − α)wT

1 exuT
y e + c̃(1 − zT e).

(4.5)

4.3. IAD and Linear Systems

We start by rewriting equation (4.1) as

[wT
1 c̃] = [wT

1 c̃]
[

G11 G12e
ũT

2 G21 1 − ũT
2 G21e

]
,

�

�

“imvol6” — 2010/7/23 — 15:43 — page 163 — #7
�

�

�

�

�

�

Osborne et al.: On Accelerating the PageRank Computation 163

Algorithm 2. (Stationary distribution computation 1 (SDC1).)

1. Choose an initial guess c̃ and a tolerance ε.

2. Repeat until ‖w1 − w1(old)‖ < ε:

(a) Solve (I − G11)T w1 = c̃ GT
21ũ2.

(b) Adjust c̃ = wT
1 G12e

ũT
2 G21e

.

which gives

wT
1 (I − G11) = c̃ũT

2 G21,

wT
1 G12e = c̃ũT

2 G21e.
(4.6)

Observe that the first equation in (4.6) is a linear system of the order of G11,
and the second one is just a scalar equation. However, such a system with
coefficient matrix I−G11 cannot be solved, because the right-hand side contains
c̃, which is unknown. Thus, the idea is to initially fix an arbitrary c̃ so that the
system wT

1 (I − G11) = c̃ũT
2 G21 can be solved, and once w1 is computed, we can

adjust c̃ using the second equation in (4.6).
More precisely, to compute the stationary distribution [w1 c̃]T of Ã we apply

Algorithm 2.
Typically, it takes just a few steps to reach a given tolerance ε, so that this

computation is relatively fast in terms of the number of iterations. However, the
matrices G11, G12, and G21 are full matrices, so that computations at each step
are in general very expensive. Thus, similarly to what it was done in studying
IAD with the power method, we return to the original matrix H to obtain some
sparsity.

From equation (4.3), we get

I − G11 = I − αH11 − αA − (1 − α)E = I − αH11 − αaxuT
x − (1 − α)exuT

x .

The last term, (1 − α)exuT
x , can disturb the sparsity of I −G11, but we will use

the fact that wT
1 ex = 1 − c̃ to simplify. We know this to be true, because

1 = [wT
1 c̃]e = [wT

1 c̃]
[
ex

1

]
= wT

1 ex + c̃.

We also know that

G21 = αH21 + αayuT
x + (1 − α)eyuT

x ,

�

�

“imvol6” — 2010/7/23 — 15:43 — page 164 — #8
�

�

�

�

�

�

164 Internet Mathematics

which can be used to keep the system sparse. With this knowledge, our linear
system wT

1 (I − G11) = cũT
2 G21 becomes

wT
1 (I−αH11−αaxuT

x) = c̃ũT
2

(
αH21 + αayuT

x + (1 − α)eyuT
x

)
+(1−α)(1− c̃)uT

x .

Thus to compute w1, we solve the linear system

(I−αH11−αaxuT
x)T w1 = c̃

(
αH21 + αayuT

x + (1 − α)eyuT
x

)T
ũ2+(1−α)(1−c̃)ux.

(4.7)

4.4. Dangling Nodes

As before, some reorderings of the matrix H can mean a reduction of the compu-
tational cost in the solution of the linear system. Thus, for example, assume that
H has been reordered by dangling nodes, i.e., the zero rows have been moved to
the bottom. In such a case we have

H =
[

H11 H12

0 0

]
,

so that H21 is a matrix of zeros. Then we have the following result.

Theorem 4.1. Let the matrix H be reordered by dangling nodes. Then the system
(4.7) reduces to

(I − αH11)T w1 = (1 − α(1 − c̃))ux.

Proof. Due to the reordering by dangling nodes, the vector ax is a vector of zeros
and the vector ay is a vector of ones, of the same size as ey, so that ay = ey.
Since ũ2 is a probabilistic vector, we also have eT

y ũ2 = 1. Then we can simplify
(4.7) to

(I − αH11)T w1 = c̃(αayuT
x + (1 − α)eyuT

x)T ũ2 + (1 − α)(1 − c̃)ux

= c̃(eyuT
x)T ũ2 + (1 − α)(1 − c̃)ux

= c̃uxeT
y ũ2 + (1 − α)(1 − c̃)ux

= c̃ux + (1 − α)(1 − c̃)ux

= (c̃ + (1 − α)(1 − c̃))ux

= (1 − α(1 − c̃))ux,

yielding the desired result.

Following similar reasoning, one can prove that the computation of the scalar
c̃ can also be reduced in the case of a link matrix H that has been reordered by

�

�

“imvol6” — 2010/7/23 — 15:43 — page 165 — #9
�

�

�

�

�

�

Osborne et al.: On Accelerating the PageRank Computation 165

Algorithm 3. (Stationary distribution computation 2 (SDC2).)

1. Choose an initial guess c̃ and a tolerance ε.

2. Repeat until ‖w1 − w1(old)‖ < ε:

(a) Solve (I − αH11)T w1 = (1 − α(1 − c̃))ux

(b) Adjust c̃ = αwT
1 H12e+(1−α)(1−c̃)uT

y e

uT
x e .

dangling nodes. More precisely, since G12 = αH12 + αaxuT
y + (1 − α)exuT

y , we
have the following corollary.

Corollary 4.2. The scalar

c̃ =
wT

1 G12e

ũT
2 G21e

can be computed as

c̃ =
αwT

1 H12e + (1 − α)(1 − c̃)uT
y e

uT
x e

,

when H has been reordered by dangling nodes.

Thus, our Algorithm 3 computes the stationary distribution [w1 c̃]T needed
in Algorithm 1, using the original link matrix H arranged by dangling nodes,
effectively combining IAD and linear systems.

5. Power Method and Reordering

We know that for stochastic matrices we have λ1 = 1. Since the power method
rate of convergence depends on the magnitude of the subdominant eigenvalue λ2,
it is desirable to be able to manipulate the matrix so that |λ2| is small enough to
ensure fast convergence. In [Haveliwala et al. 03], the authors have considered
improving the PageRank computation by exploiting the knowledge of some of
its eigenvalues, in particular the subdominant eigenvalue. The best case is that
in which all the entries of an n×n matrix are equal to 1/n, because then λ2 = 0,
while the worst case is the identity matrix. Several cases in between are consid-
ered; for example, in [Dayar and Stewart 00] and [Molnar and Simonovits 98],
the authors study the behavior of the subdominant eigenvalue. Although it has

�

�

“imvol6” — 2010/9/23 — 10:01 — page 166 — #10
�

�

�

�

�

�

166 Internet Mathematics

Figure 1. California data before and after a reordering by rows and columns.

been suggested that the power method may be independent of matrix reordering
[Del Corso et al. 05], our experiments show that in the great majority of cases
considered, a reordering of the matrix by decreasing row and column degree
speeds up the power method considerably. This reordering tends to condense all
the information into a relatively very small area. See Figure 1.

6. Testing the Algorithms

We have used Matlab to write programs to test the algorithms on a number
of different data sets. The data sets are of different sizes, ranging from about
ten thousand to millions of web pages. We list here seven of the basic programs
developed:

1. A basic linear system, with I − αH .

2. A linear system with I − αĤ , where Ĥ is reordered by decreasing row
degree.

3. A linear system ordered by dangling nodes to solve the system (2.1) as
indicated.

4. IAD with the power method to solve for w1.

5. IAD and a linear system as described in Section 4.3.

6. The power method (1.2).

7. The power method with reordering by decreasing row and column degree.

�

�

“imvol6” — 2010/9/23 — 10:01 — page 167 — #11
�

�

�

�

�

�

Osborne et al.: On Accelerating the PageRank Computation 167

Calif. Stanford CNR Stan–Berk EU
Interval Size 100 5000 5000 10000 15000
Sample Size 87 57 66 69 58

Mean Diff. of (Time) 1.6334 2.2081 2.1136 1.4801 2.2410
S.D. Diff. of (Time) 0.6000 0.3210 0.1634 0.2397 0.2823
Iter. of RePM/PM 0.4789 0.2278 0.2280 0.2681 .2235
Iter. of PM/RePM 2.0880 4.3903 4.3856 3.7297 4.4752

S.D. of Ratio 0.9067 0.7636 0.7732 0.6795 0.6085
Favor. to Reorder 100.00% 98.25% 100.00% 100.00% 100.00%

Table 1. Comparison of how the power method works before and after reordering
the data. Here “Stan–Berk” means “Stanford–Berkeley,” “S.D. of Diff.” refers to
the standard deviation of the differences; “Iter.” refers to number of iterations
required; “PM” refers to the power method; “RePM” refers to the reordered
power method; and “Favor.” is short for “Favorability.”

For linear systems, direct methods and SOR (with relaxation parameter ω = 1)
were used.

The reordered power method deserves some comment. Table 1 shows how
reordering affects the power method. The test is run by forming a smaller sam-
ple matrix in the center of the whole matrix, where we measure the time and
iterations required for the sample matrix, and then increase the matrix size by
an interval, taking the time and iterations required for each partition of the ma-
trix. The size of the starting sample matrix is the size of the interval, unless
the interval is less than 1000, in which case the starting matrix is of size 1000.
Samples are taken until the entire matrix is included.

The difference between the times is taken and recorded, as well at the stan-
dard deviation. The ratios between the power method and the reordered power
method and the standard deviation of the ratio are also recorded. Observe the
decrease in more than 50% in the number of iterations required for convergence.

Finally, the favorability is recorded. Given as a percentage, the favorability to
reorder presents the percentage of the time that it is faster to reorder the matrix.
As Table 1 shows, it is always favorable to reorder with four out of five tested
matrices, whereas the fifth is favorable to reorder almost all of the time.

Figure 2 shows how reordering matrices will decrease the number of iterations
required for the power method to converge. The first two graphs show two
different data sets of different sizes, where reordering by row and column degree
makes a drastic difference. The third graph contains the same data set as the
first, except it is reordered only by row degree.

In studying the programs developed and how they compare to one another, we
tested them on a number of matrices and recorded the data. Table 2 compares
the time it takes to run the code successfully and the number of iterations for the

�

�

“imvol6” — 2010/9/23 — 10:01 — page 168 — #12
�

�

�

�

�

�

168 Internet Mathematics

Matrix Code Time (sec) GS-I PM-I w1-I Size G11

California I − αH 0.119873 53
I − αH w/ reordering 0.060155 9

9664 Nodes Meyer’s Algorithm 0.061451 18
1.73E-4 Sparsity IAD w/ Power Method 0.125680 13 46 1000
4637 Dang Nodes IAD w/ system & SOR 0.690981 49 181 1000

Power Method 0.084233 97
Power Method w/ reordering 0.035091 22

Stanford I − αH 4.673486 56
I − αH w/ reordering 5.290621 55

281903 Nodes Meyer’s Algorithm 5.584932 56
2.91E-5 Sparsity IAD w/ Power Method 4.485200 23 61 1500
172 Dang Nodes IAD w/ system & SOR 3.684937 23 57 750

Power Method 4.950945 90
Power Method w/ reordering 2.276534 19

CNR (2000) I − αH 5.537661 50
I − αH w/ reordering 4.942164 24

325557 Nodes Meyer’s Algorithm 4.380352 23
3.03E-5 Sparsity IAD w/ Power Method 5.328511 19 53 10000

78056 Dang Nodes IAD w/ system & SOR 4.172643 19 48 1000
Power Method 7.018947 87

Power Method w/ reordering 3.102524 19
Stanford-Berkeley I − αH 9.320476 55

I − αH w/ reordering 11.704303 46
685230 Nodes Meyer’s Algorithm 14.450852 62

1.62E-5 Sparsity IAD w/ Power Method 30.842767 90 237 4500
4744 Dang Nodes IAD w/ system & SOR 24.503765 90 256 1000

Power Method 8.958482 90
Power Method w/ reordering 7.095738 28

EU(2005) I − αH 33.467238 50
I − αH w/ reordering 53.200779 37

862664 Nodes Meyer’s Algorithm 45.817442 39
2.58E-5 Sparsity IAD w/ Power Method 25.945539 15 41 10000
4744 Dang Nodes IAD w/ system & SOR 22.499486 16 48 10000

Power Method 38.617480 82
Power Method w/ reordering 16.727974 19

IN (2004) I − αH 38.29 52
I − αH w/ reordering 31.46 28

1382908 Nodes Meyer’s Algorithm 29.22 25
8.85E-6 Sparsity IAD w/ Power Method 26.69 18 44 10000

282306 Dang Nodes IAD w/ system & SOR 23.95 18 46 10000
Power Method 46.09 88

Power Method w/ reordering 31.59 68
Wikipedia I − αH 44.02 54

I − αH w/ reordering 52.95 22
1634989 Nodes Meyer’s Algorithm 64.01 54

7.39E-6 Sparsity IAD w/ Power Method 46.32 19 54 10000
72556 Dang Nodes IAD w/ system & SOR 119.94 101 400 10000

Power Method 33.86 59
Power Method w/ reordering 18.89 12

Table 2. This table lists each data set, the programs used, the time it took to run
the program, and the number of iterations necessary for each code. Here “GS-I”
indicates the number of Gauss–Seidel iterations, “PM-I” indicates the number
of power method iterations, and “w1-I” indicates the number of w1 iterations.
Sparsity is found by taking the number of nonzero entries in the matrix and
dividing by the number of nodes in the matrix.

�

�

“imvol6” — 2010/9/23 — 10:01 — page 169 — #13
�

�

�

�

�

�

Osborne et al.: On Accelerating the PageRank Computation 169

1000 2000 3000 4000 5000 6000 7000 8000 9000 9664
20

40

60

80

100

Matrix Size

Ite
ra

tio
ns

 R
eq

ui
re

d
to

 C
on

ve
rg

e

No Reordering

Reordering by Dangling Nodes and Zero Columns

Power Method Reordering by Row & Column Degree (California data)

100000 200000 300000 400000 500000 600000 700000 800000 862664

20

40

60

80

100

Matrix Size

N
um

be
r

of
 It

er
at

io
ns

 to
 C

on
ve

rg
e

No Reordering

Reording by Dangling Nodes and Zero Columns

Power Method Reordering by Row & Column Degree (EU (2005) data)

1000 2000 3000 4000 5000 6000 7000 8000 9000 9664
0

20

40

60

80

100

Matrix Size

Ite
ra

tio
ns

 R
eq

ui
re

d
to

 C
on

ve
rg

e

No Reordering

Reordering by Dangling Nodes

Power Method Reordering by Row Degree (California data)

Figure 2. Comparison between the power method with original data and the
power method with reordered data.

code’s iterative method. The boldface lines name the programs that are optimal
for the corresponding matrix.

7. Final Remarks

In exploiting some of the existing theory and techniques for computing the
PageRank vector, we have developed and tested algorithms that combine ba-
sic eigenvector and linear systems approaches and reported on their efficiency.
Of special interest is the faster convergence obtained when the power method is
applied to a reordered matrix. We also observed that IAD combined with linear
systems to solve for the stationary distribution of the approximate aggregated

�

�

“imvol6” — 2010/9/23 — 10:01 — page 170 — #14
�

�

�

�

�

�

170 Internet Mathematics

matrix gives in general better results than using IAD with the power method
(see Algorithm 3). It remains to test a large set of algorithms for sparse lin-
ear systems [Barrett et al. 94] and to test with much larger matrices. Future
research also includes attempting to achieve a rigorous theoretical explanation
of how the subdominant eigenvalue may be affected by column–row reorder-
ing, and possible combination with recent theories developed in [Andersen et
al. 06, Berkhin 05, Jeh and Widom 02].

Acknowledgments. This work was supported in part by NSF Grant DMS–0552573.

References

[Andersen et al. 06] R. Andersen, F. R. K. Chung, and K. J. Lang. “Local Graph
Partitioning Using PageRank Vectors.” In Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, pp. 475–486. Washington, DC:
IEEE Press, 2006.

[Andersen and Peres 09] R. Andersen and Y. Peres. “Finding Sparse Cuts Locally Us-
ing Evolving Sets.” In Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, pp. 235–244. New York: ACM Press, 2009.

[Barrett et al. 94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J.
Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods. Philadelphia:
SIAM, 1994.

[Berkhin 05] P. Berkhin. “Bookmark-Coloring Algorithm for Personalized PageRank
Computing.” Internet Mathematics 3 (2005), 41–62.

[Brin et al. 99] S. Brin, L. Page, R. Motwami, and T. Winograd. “The PageRank Ci-
tation Ranking: Bringing Order to the Web.” Technical Report 1999-0120, Stanford
University, 1999.

[Dayar and Stewart 00] T. Dayar and W. J. Stewart. “Comparison of Partitioning
Techniques for Two-Level Iterative Solvers on Large, Sparse Markov Chains.” SIAM
J. on Sci. Comput. 21 (2000), 1691–1705 .

[Del Corso et al. 05] G. M. Del Corso, A. Gulli, and F. Romani. “Fast PageRank Com-
putation via a Sparse Linear System.” Internet Mathematics 2 (2005), 251–273.

[Haveliwala et al. 03] T. Haveliwala, S. Kamvar, D. Klein, C. Manning, and G. Golub,
“Computing PageRank Using Extrapolation.” Technical report, Stanford University,
2003.

[Ipsen and Kirkland 06] I. C. F. Ipsen and S. Kirkland. “Convergence Analysis of a
PageRank Updating Algorithm by Langville and Meyer.” Siam J. Mat. Anal. and
Appl. 27 (2006), 952–967.

[Jeh and Widom 02] G. Jeh and J. Widom. “Scaling Personalized Web Search.” Tech-
nical report, Stanford University, 2002.

�

�

“imvol6” — 2010/9/23 — 10:01 — page 171 — #15
�

�

�

�

�

�

Osborne et al.: On Accelerating the PageRank Computation 171

[Langville and Meyer 04] A. N. Langville and C. D. Meyer. “Deeper inside PageRank.”
Internet Mathematics 1 (2004), 335–380.

[Langville and Meyer 06] A. N. Langville and C. D. Meyer. “A Reordering for the
PageRank Problem.” SIAM J. on Scient. Comp. 27 (2006), 2112–2120.

[Molnar and Simonovits 98] G. Molnar and A. Simonovits, “The Subdominant Eigen-
value of a Large Stochastic Matrix.” Economic Systems Research 10:1 (1998),
09535314.

Steve Osborne, Mathematics Department, Greenville College, Greenville, IL 62246-
1145 (200506169@panthers.greenville.edu)

Jorge Rebaza, Department of Mathematics, Missouri State University, Springfield, MO
65897 (jrebaza@missouristate.edu)

Elizabeth Wiggins, Department of Mathematics, Physics, and Computer Science,
Georgetown College, Georgetown, KY 40324 (Lwiggin0@georgetowncollege.edu)

Received January 13, 2009; accepted in revised form November 30, 2009.

